Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. xét tam giác vuông ADE và tam giác vuông ADF,có :
AB = AC ( ABC cân )
Góc EAD = góc FAD ( gt )
AD : cạnh chung
Vậy tam giác vuông ADE = tam giác vuông ADF ( c.g.c )
=> DE = DF ( 2 cạnh tương ứng )
b. xét tam giác vuông BDE và tam giác vuông CDF, có:
góc B = góc C ( ABC cân )
BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)
c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
SUy ra: DE=DF
b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có
BD=CD
DE=DF
Do đó: ΔBDE=ΔCDF
c: Ta có: ΔABC cân tại A
mà AD là phân giác
nên AD là đường trung trực của BC
a: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
https://h.vn/hoi-dap/question/49431.html
Bạn xem ở đây nhé
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
Xét tam giác ABC cân tại A có:
AD là phân giác của góc BAC (gt).
\(\Rightarrow\) AD là đường trung trực của BC (Tính chất tam giác cân).
Tự vẽ hình nha:v
a) Xét \(\Delta AED\) và \(\Delta AFD:\)
AD: cạnh chung
\(\widehat{EAD}=\widehat{FAD}\) (AD là tia phân giác góc A)
\(\widehat{AED}=\widehat{AFD}=90^o\)
=> \(\Delta AED=\Delta AFD\left(ch.gn\right)\)
=> DE=DF (2 cạnh t/ứ)
b) Vì tam giác ABC có AB=AC => Tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Xét ∆BED và ∆CFD:
DE=DF(cm câu a)
\(\widehat{BED}=\widehat{CFD}=90^o\)
\(\widehat{EBD}=\widehat{FCD}\left(cmt\right)\)
=> ∆BED=∆CFD(cgv.gn)
c. Trong tam giác cân, đường phân giác đồng thời là đường cao
=> AD vuông góc với BC
Mà BD=DC(∆BED=∆CFD)
=> AD là trung trực của BC
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: BD=CD(hai cạnh tương ứng)
Xét ΔEDB vuông tại E và ΔFDC vuông tại F có
DB=DC(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔEDB=ΔFDC(cạnh huyền-góc nhọn)
Suy ra: DE=DF(hai cạnh tương ứng)