K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

Giải thích các bước giải:

Trong có góc BAD tù nên góc BAD > góc ADB => BD > BA. (1)
Ta có góc BDE = góc BAD + góc ABD (vì …)
Suy ra góc BDE là góc tù, vậy góc BDE là góc lớn nhất trong 3 góc của tam giác BDE.
Trong tam giác BDE ta có: góc BDE > gocsBED => BE > BD. (2)
Tương tự có góc BEC tù, trong tam giác BEC có góc BEC > góc BCE => BC > BE (3)
Từ 1, 2 và 3 suy ra: BA < BD < BE < BC

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét tam giác BAD:

+        Góc A tù (góc > 90°) nên cạnh BD là cạnh lớn nhất trong tam giác này (đối diện với góc A).

Nên BD > BA.

+        Góc A tù nên góc ABD và góc ADB là góc nhọn → góc BDE là góc tù (ba điểm A, D, E thẳng hàng hay góc ADE =180°). Vậy BE (đối diện với góc BDE) > BD.

Tương tự, ta có:

+        Góc BDE là góc tù nên góc DBE và góc DEB là góc nhọn → góc BEG là góc tù. Vậy BG > BE.

+        Góc BEG là góc tù nên góc EBG và góc EGB là góc nhọn → góc BGC là góc tù. Vậy BC > BG.

Vậy BA < BD <BE < BG < BC.

Hay các đoạn thẳng BA, BD, BE, BG, BC theo thứ tự tăng dần là: BA, BD, BE, BG, BC. 

29 tháng 1 2020

xin lỗi mình học lớp 5

cậu học lớp mấy vậy?

29 tháng 1 2020

A B C D E

Xét \(\Delta ABD\)có \(\widehat{A}\)tù \(\Rightarrow BA< BD\)(1); \(\widehat{ADB}< 90^o\)

\(\Rightarrow\widehat{BDE}>90^o\)\(\Rightarrow\Delta BDE\)tù tại D \(\Rightarrow BD< BE\)(2); \(\widehat{BED}< 90^o\)

\(\Rightarrow\widehat{BEC}>90^o\)\(\Rightarrow\Delta BEC\)tù tại E \(\Rightarrow BE< BC\)(3)

Từ (1), (2), (3) \(\Rightarrow BA< BD< BE< BC\left(đpcm\right)\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(AB > AC \Rightarrow \widehat {ABC} < \widehat {ACB}\)( quan hệ giữa góc và cạnh đối diện trong tam giác ABC)

\(\begin{array}{l} \Rightarrow {180^0} - \widehat {ABD} < {180^0} - \widehat {ACE}\\ \Rightarrow \widehat {ABD} > \widehat {ACE}\end{array}\)

Vì BD= BA nên tam giác ABD cân tại B \( \Rightarrow \widehat {ABD} = {180^0} - 2\widehat {ADB}\)

Vì CE = CA nên tam giác ACE cân tại C \( \Rightarrow \widehat {ACE} = {180^0} - 2\widehat {AEC}\)

\(\begin{array}{*{20}{l}}{ \Rightarrow {{180}^0} - 2\widehat {ADB} > {{180}^0} - 2\widehat {AEC}}\\{ \Rightarrow \widehat {ADB} < \widehat {AEC}}\\{Hay{\mkern 1mu} \widehat {ADE} < \widehat {AED}}\end{array}\)

b) Xét tam giác ADE ta có : \(\widehat {ADB} < \widehat {AEC}\)

\( \Rightarrow AD > AE\)(Quan hệ giữa cạnh và góc đối diện trong tam giác). 

3 tháng 6 2020

Giải thích các bước giải:

a)Xét tam giác BAD và tam giác BED:

BD:cạnh chung

^ABD=^EBD (vì BD là tia phân giác của ^ABC)

AB=BE(gt)

=>tam giác BAD=tam giác BED(c.g.c)

b)Từ tam giác BAD=tam giác BED(cmt)

=>AD=DE(cặp cạnh t.ứ)

và ^BAD=^BED(cặp góc .tứ),mà ^BAD=900 (^BAC=900)=>^BED=900

Xét tam giác DFA vuông ở A và tam giác DCE vuông ở E có:

AD=AE (cmt)

^ADF=^EDC (2 góc đối đỉnh)

=>tam giác DFA=tam giác DCE(cgv-gnk)

=>DF=DC(cặp cạnh t.ứ)

=>tam giác DFC cân tại D (dấu hiệu nhận biết tam giác cân)

c)Từ tam giác DFA=tam giác DCE (cmt)

=>AF=CE(cặp cạnh t.ứ)

Ta có: BE+CE=BC

       BA+AF=BF

mà AF=CE(cmt),AB=AE(gt)

=>BC=BF

=>tam giác BFC cân tại B (dấu hiệu nhận biết tam giác cân)

=>^BCF=1800−FBC21800−FBC2 (tính chất tam giác cân)  (1)

Vì AB=AE(gt)

=>tam giác ABE cân tại B (dấu hiệu nhận biết tam giác cân)

=>^BEA=1800−ABE21800−ABE2 (tính chất tam giác cân)  (2)

Từ (1);(2);lại có ^ABE=^FBC

=>^BCF=^BEA,mà 2 góc này nằm ở vị trí đồng vị

=>AE//CF(dấu hiệu nhận biết 2 đg thẳng song song)

12 tháng 12 2016

Kí hiệu tam giác vt là t/g nhé

a) Xét t/g AOC và t/g BOD có:

OA = OB (gt)

CAO = DBO (gt)

AC = BD (gt)

Do đó, t/g AOC = t/g BOD (c.g.c)

=> OC = OD (2 cạnh tương ứng) (1)

Tương tự ta cũng có t/g AOE = t/g BOF (c.g.c)

=> OE = OF (2 cạnh tương ứng) (2)

(1) và (2) là đpcm

b) t/g AOC = t/g BOD (câu a)

=> AOC = BOD (2 góc tương ứng)

Mà AOC + COB = 180o ( kề bù)

nên BOD + COB = 180o

=> COD = 180o

=> C,O,D thẳng hàng

trường hợp c` lại tương tự

c) Có: AC = BD (gt); AE = BF (gt)

=> AE - AC = BF - BD ( vì hình của mk AE > AC c` nếu hình bn vẽ AC > AE thì ngược lại)

=> EC = FD

Vì BAx = ABy mà 2 góc này ở vị trí so le trong nên Ax // By

Xét t/g CEO và t/g DFO có:

CEO = DFO (so le trong)

EC = FD (cmt)

ECO = FDO (so le trong)

Do đó, t/g CEO = t/g DFO (g.c.g)

=> CO = DO (2 cạnh tương ứng)

EO = FO (2 cạnh tương ứng)

Từ đó dễ dàng suy ra t/g COF = t/g DOE (c.g.c)

=> CF = DE (2 cạnh tương ứng) (đpcm)

 

12 tháng 12 2016

nhờ bạn giải chi tiết cho mình ở câu b vs ạ