Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A, ta được:
B C 2 = A C + A B 2 ⇒ B C 2 = 15 2 + 20 2 ⇔ B C 2 = 25 2 ⇔ BC = 25( cm )
Đặt BD = x ⇒ DC = 25 - x
Áp dụng định lý Py 0 ta – go vào hai tam giác vuông AHB và AHC, ta được:
Trừ theo vế các đẳng thức ( 1 ) và ( 2 ) ta được:
15 2 - x 2 - 20 2 + ( 25 - x ) 2 = 0 ⇔ 50x = 450 ⇔ x = 9( cm )
Nên HC = 25 - 9 = 16( cm )
Thay x = 9 vào đẳng thức ( 1 ) ta có: H A 2 = 15 2 - 9 2 = 122 ⇔ HA = 12( cm )
Áp dụng tính chất đường phân giác AD vào tam giác AHB, ta được:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Áp dụng tính chất đường chất đường phân giác AE của tam giác ACH, ta được:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Ta có BC^2 = AB^2 + AC^2 = 625 => BC =25
=> AH = AB.AC/BC = 20.15/25 = 12
Do tính chất phân giác, ta có:
HD/DB = AH/AB= 12/15=4/5
=> HD/DB =4/5
=> DB/HD =5/4 => HB/HD =9/4 => HD =4HB/9
Mà HB^2 = AB^2 - AH^2 = 15^2 - 12^2 =81
=> HB=9 => HD = 4 ( cm )
Tương tự ta cũng có:
Do tính chất phân giác, ta có:
HE/EC = AH/AC= 12/20=3/5
=> HE/EC =3/5
=> EC/HE =5/3 => HC/HE =8/3 => HE =3HC/8
Mà HC^2 = AC^2 - AH^2 = 20^2 - 12^2 =256
=> HC=16 => HE = 6 ( cm )
Vậy HD = 4 ( cm ) và HE = 6 ( cm )
Ta có BC^2 = AB^2 + AC^2 = 625 => BC =25
=> AH = AB.AC/BC = 20.15/25 = 12
Do tính chất phân giác, ta có:
HD/DB = AH/AB= 12/15=4/5
=> HD/DB =4/5
=> DB/HD =5/4 => HB/HD =9/4 => HD =4HB/9
Mà HB^2 = AB^2 - AH^2 = 15^2 - 12^2 =81
=> HB=9 => HD = 4
====================
Tương tự
Do tính chất phân giác, ta có:
HE/EC = AH/AC= 12/20=3/5
=> HE/EC =3/5
=> EC/HE =5/3 => HC/HE =8/3 => HE =3HC/8
Mà HC^2 = AC^2 - AH^2 = 20^2 - 12^2 =256
=> HC=16 => HE = 6
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
Theo tính chất của \(\Delta\) vuông ta có:\(AH^2=BH.HC\)
Theo tính chất phân giác ta có: \(\frac{AD}{DC}=\frac{AH}{HC}\)
\(\Leftrightarrow\frac{AD^2}{DC^2}=\frac{AH^2}{HC^2}=\frac{HB.HC}{HC^2}=\frac{HB}{HC}\left(đpcm\right)\)