Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$|x_1-x_2|=2$ sẵn rồi thì việc gì phải tính nữa bạn?
ý em là rút gọn biểu thức đó rồi áp dụng hệ thức vi ét để tìm n ( n là ẩn khi thay vào )
Hình tự vẽ ạ!
a, Xét \(\Delta MED\)và \(\Delta AEM\)có:
\(\widehat{DME}=\widehat{ACM}\left(so-le-trong\right)\)
\(\widehat{MAE}=\widehat{ACM}\)(cùng chắn cung \(AD\))
\(\Rightarrow\widehat{DME}=\widehat{MAE}\)
\(\widehat{E}\)là góc chung.
\(\Rightarrow\Delta MED~\Delta AEM\left(1\right)\)
Xét \(\Delta BED\)và \(\Delta AEB\)có:
\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn cung \(BD\))
\(\widehat{E}\)là góc chung
\(\Rightarrow\Delta BED~\Delta AEB\left(3\right)\)
b, Từ \(\left(1\right)\Rightarrow\frac{ME}{AE}=\frac{ED}{EM}\Rightarrow ME^2=ED.EA\left(2\right)\)
Từ \(\left(3\right)\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Rightarrow EB^2=EA.ED\left(4\right)\)
Từ \(\left(2\right)\left(4\right)\Rightarrow EM=EB\)
\(\Rightarrow E\)là trung điểm của \(MB\left(Đpcm\right)\)
~~~Happy new year ~~~
\(=\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+2\cdot\dfrac{sin^2a}{cos^2a}\cdot cos^4a\)
\(=1-2\cdot sin^2a\cdot cos^2a+2\cdot sin^2a\cdot cos^2a\)
=1
Câu 3:
Gọi thời gian hai vòi 1 và 2 chảy một mình đầy bể lần lượt là x,y
Trong 1 giờ, vòi 1 chảy được: 1/x(bể)
Trong 1 giờ, vòi 2 chảy được: 1/y(bể)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{1}{x}=\dfrac{1}{5}-\dfrac{1}{15}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=15\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{\left(x^2+1\right)^3}-1+3x^4-4x^3=0\\ \Leftrightarrow\dfrac{\left(x^2+1\right)^3-1}{\sqrt{\left(x^2+1\right)^3}+1}+x^2\left(3x^2-4x\right)=0\\ \Leftrightarrow x^2\left[\dfrac{\left(x^2+1\right)^2+\left(x^2+1\right)+1}{\sqrt{\left(x^2+1\right)^3}+1}+3x^2-4x\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2+x^2+\left(x^2+1\right)^2}{\sqrt{\left(x^2+1\right)^3}+1}+3x^2-4x=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\ge\dfrac{2+0+1}{1+1}+3x^2-4x=3x^2-4x+\dfrac{3}{2}>0\)
Vậy PT có nghiệm \(x=0\)
Xét ΔAHB vuông tại H có \(tanBAH=\dfrac{BH}{AH}\)
=>\(BH=AH\cdot tanBAH=4\cdot tan28\simeq2,13\left(cm\right)\)
Xét ΔAHC vuông tại H có
\(tanC=\dfrac{AH}{HC}\)
=>\(HC=\dfrac{AH}{tanC}=\dfrac{4}{tan40}\simeq4,77\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AB=\sqrt{AH^2+HB^2}\simeq4,53\left(cm\right)\)
ΔAHC vuông tại H
=>\(AH^2+HC^2+AC^2\)
=>\(AC=\sqrt{AH^2+HC^2}\simeq6,23\left(cm\right)\)