K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHB vuông tại H có \(tanBAH=\dfrac{BH}{AH}\)

=>\(BH=AH\cdot tanBAH=4\cdot tan28\simeq2,13\left(cm\right)\)

Xét ΔAHC vuông tại H có

\(tanC=\dfrac{AH}{HC}\)

=>\(HC=\dfrac{AH}{tanC}=\dfrac{4}{tan40}\simeq4,77\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AB=\sqrt{AH^2+HB^2}\simeq4,53\left(cm\right)\)

ΔAHC vuông tại H

=>\(AH^2+HC^2+AC^2\)

=>\(AC=\sqrt{AH^2+HC^2}\simeq6,23\left(cm\right)\)

a: ΔBED\(\sim\)ΔBAC

ΔCDF\(\sim\)ΔCBA

ΔBED\(\sim\)ΔDFC

AH
Akai Haruma
Giáo viên
20 tháng 5 2022

$|x_1-x_2|=2$ sẵn rồi thì việc gì phải tính nữa bạn?

20 tháng 5 2022

ý em là rút gọn biểu thức đó rồi áp dụng hệ thức vi ét để tìm n ( n là ẩn khi thay vào )

6 tháng 10 2021

a) ĐKXĐ: x >= 1/2

Pt <=> 2x - 1 = 9

<=> x = 5 (thỏa ĐKXĐ)

b) ĐKXĐ: x>=4/3

Pt <=> 6x - 8 = 4

<=> 6x = 12 <=> x = 2 (thỏa ĐKXĐ)

c) ĐKXĐ: x >= 1

Pt <=> sqrt(x-1)=4

<=> x - 1 = 16 <=> x = 17 (thỏa ĐKXĐ)

6 tháng 10 2021

Bn dùng \(\sum\) đi nhé

25 tháng 1 2020

Hình tự vẽ ạ!

a, Xét  \(\Delta MED\)và \(\Delta AEM\)có:

\(\widehat{DME}=\widehat{ACM}\left(so-le-trong\right)\)

\(\widehat{MAE}=\widehat{ACM}\)(cùng chắn cung \(AD\))

\(\Rightarrow\widehat{DME}=\widehat{MAE}\)

\(\widehat{E}\)là góc chung.

\(\Rightarrow\Delta MED~\Delta AEM\left(1\right)\)

Xét \(\Delta BED\)và \(\Delta AEB\)có:

\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn cung \(BD\))

\(\widehat{E}\)là góc chung

\(\Rightarrow\Delta BED~\Delta AEB\left(3\right)\)

b, Từ \(\left(1\right)\Rightarrow\frac{ME}{AE}=\frac{ED}{EM}\Rightarrow ME^2=ED.EA\left(2\right)\)

Từ \(\left(3\right)\Rightarrow\frac{EB}{EA}=\frac{ED}{EB}\Rightarrow EB^2=EA.ED\left(4\right)\)

Từ \(\left(2\right)\left(4\right)\Rightarrow EM=EB\)

\(\Rightarrow E\)là trung điểm của \(MB\left(Đpcm\right)\)

~~~Happy new year ~~~

\(=\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+2\cdot\dfrac{sin^2a}{cos^2a}\cdot cos^4a\)

\(=1-2\cdot sin^2a\cdot cos^2a+2\cdot sin^2a\cdot cos^2a\)

=1

Câu 3: 

Gọi thời gian hai vòi 1 và 2 chảy một mình đầy bể lần lượt là x,y

Trong 1 giờ, vòi 1 chảy được: 1/x(bể)

Trong 1 giờ, vòi 2 chảy được: 1/y(bể)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{1}{x}=\dfrac{1}{5}-\dfrac{1}{15}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=15\end{matrix}\right.\)

31 tháng 10 2021

\(PT\Leftrightarrow\sqrt{\left(x^2+1\right)^3}-1+3x^4-4x^3=0\\ \Leftrightarrow\dfrac{\left(x^2+1\right)^3-1}{\sqrt{\left(x^2+1\right)^3}+1}+x^2\left(3x^2-4x\right)=0\\ \Leftrightarrow x^2\left[\dfrac{\left(x^2+1\right)^2+\left(x^2+1\right)+1}{\sqrt{\left(x^2+1\right)^3}+1}+3x^2-4x\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2+x^2+\left(x^2+1\right)^2}{\sqrt{\left(x^2+1\right)^3}+1}+3x^2-4x=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\ge\dfrac{2+0+1}{1+1}+3x^2-4x=3x^2-4x+\dfrac{3}{2}>0\)

Vậy PT có nghiệm \(x=0\)

14 tháng 12 2021

x = 2

14 tháng 12 2021

Ghê quá anh ơi ^^\