Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x – 15 = 25 – 5x
=> 3x + 5x = 25 + 15
=> 8x = 40
=> x = 5
b) 3x - 17 = 2x – 7
=> 3x - 2x = -7 + 17
=> x = 10
c) 2x – 17 = – (3x – 18)
=> 2x - 17 = -3x + 18
=> 2x + 3x = 18 + 17
=> 5x = 35
=> x = 7
d) 3x – 14 = 2(x – 9) + 1
=> 3x - 14 = 2x - 18 + 1
=> 3x - 2x = -18 + 1 + 14
=> x = -3
f) (x – 5)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
a) Ta có: \(3x-15=25-5x\)
\(\Leftrightarrow3x-15-25+5x=0\)
\(\Leftrightarrow8x-40=0\)
\(\Leftrightarrow8x=40\)
hay x=5
Vậy: x=5
b) Ta có: \(3x-17=2x-7\)
\(\Leftrightarrow3x-17-2x+7=0\)
\(\Leftrightarrow x-10=0\)
hay x=10
Vậy: x=10
c) Ta có: \(2x-17=-\left(3x-18\right)\)
\(\Leftrightarrow2x-17=-3x+18\)
\(\Leftrightarrow2x-17+3x-18=0\)
\(\Leftrightarrow5x-35=0\)
\(\Leftrightarrow5x=35\)
hay x=7
Vậy: x=7
d) Ta có: \(3x-14=2\left(x-9\right)+1\)
\(\Leftrightarrow3x-14=2x-18+1\)
\(\Leftrightarrow3x-14-2x+18-1=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: x=-3
f) Ta có: \(\left(x-5\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;8\right\}\)
c) x.(1+2+3+4+...+100)=0
x.5050=0
x=0:5050=0
Vậy x=0
d) x.(1+2+3+4+5+...+100)=5050
x.5050=5050
x=1
Vậy x=1
e) x+1+x+2+x+3+x+4+...+x+100=5050
(x+x+x+x+...+x)+(1+2+3+4+...+100)=5050
100 số hạng x
x.100+5050=5050
x.100=0
x=0
Vậy x=0
A=-(3x+7)+(5x-2)+(2x-10)
=-3x-7+5x-2+2x-10
=(-3x+5x+2x)-(7+2+10)
=4x-19
B = (6x+8)-(4x-5)-3x
= 6x+8-4x+5-3x
= (6x-4x-3x) + (8+5)
= -x + 13
= 13-x
C = 2(5x+3) - (2x-1) + 12
= 10x+6 - 2x + 1 + 12
= (10x-2x) + (6+1+12)
= 8x + 19
D = (x+7)-3(x+1)+2x-5
= x+7-3x-3+2x-5
= (x-3x+2x) + (7-3-5)
= -1
a) \(\dfrac{2x+5}{2x+1}=\dfrac{2x+1+4}{2x+1}=\dfrac{2x+1}{2x+1}+\dfrac{4}{2x+1}=1+\dfrac{4}{2x+1}\)
Để \(\dfrac{2x+5}{2x+1}\in Z\) thì \(\dfrac{4}{2x+1}\in Z\)
\(\Rightarrow4\) ⋮ \(2x+1\)
\(\Rightarrow2x+1\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow2x\in\left\{0;-2;1;-3;3;-5\right\}\)
\(\Rightarrow x\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};\dfrac{3}{2};-\dfrac{5}{2}\right\}\)
Mà x nguyên \(\Rightarrow\text{x}\in\left\{0;-1\right\}\)
b) \(\dfrac{3x+5}{x+1}=\dfrac{3x+3+2}{x+1}=\dfrac{3\left(x+1\right)+2}{x+1}=\dfrac{3\left(x+1\right)}{x+1}+\dfrac{2}{x+1}=3+\dfrac{2}{x+1}\)
Để \(\dfrac{3x+5}{x+1}\in Z\) thì \(\dfrac{2}{x+1}\in Z\)
\(\Rightarrow2\) ⋮ \(x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3\right\}\)
c) \(\dfrac{3x+8}{x-1}=\dfrac{3x-3+11}{x-1}=\dfrac{3\left(x-1\right)+11}{x-1}=\dfrac{3\left(x-1\right)}{x-1}+\dfrac{11}{x-1}=3+\dfrac{11}{x-1}\)
Để: \(\dfrac{3x+8}{x-1}\in Z\) thì \(\dfrac{11}{x-1}\in Z\)
\(\Rightarrow11\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)
\(\Rightarrow x\in\left\{2;0;12;-10\right\}\)
d) \(\dfrac{5x+12}{x-2}=\dfrac{5x-10+22}{x-2}=\dfrac{5\left(x-2\right)+22}{x-2}=\dfrac{5\left(x-2\right)}{x-2}+\dfrac{22}{x-2}=5+\dfrac{22}{x-2}\)
Để: \(\dfrac{5x+12}{x-2}\in Z\) thì \(\dfrac{22}{x-2}\in Z\)
\(\Rightarrow22\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(22\right)=\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
\(\Rightarrow x\in\left\{3;1;4;0;13;-9;24;-20\right\}\)
e) \(\dfrac{7x-12}{x+16}=\dfrac{7x+112-124}{x+16}=\dfrac{7\left(x+16\right)-124}{x+16}=\dfrac{7\left(x+16\right)}{x+16}-\dfrac{124}{x+16}=7-\dfrac{124}{x+16}\)
Để \(\dfrac{7x-12}{x+16}\in Z\) thì \(\dfrac{124}{x+16}\in Z\)
\(\Rightarrow124\) ⋮ \(x+16\)
\(\Rightarrow x+16\inƯ\left(124\right)=\left\{1;-1;2;-2;4;-4;31;-31;62;-62;124;-124\right\}\)
\(\Rightarrow x\in\left\{-15;-17;-14;-18;-12;-20;15;-47;46;-78;108;-140\right\}\)
a: \(\Leftrightarrow12x-15⋮3x+1\)
\(\Leftrightarrow12x+4-19⋮3x+1\)
\(\Leftrightarrow3x+1\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{0;6\right\}\)
b: \(\Leftrightarrow6x-10⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{0;-1;6;-7\right\}\)
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)