Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-6}{-35}:\frac{27}{180}+-\frac{3}{28}=\frac{6}{35}.\frac{180}{27}+-\frac{3}{28}=\frac{8}{7}+-\frac{3}{28}=\frac{32}{28}+-\frac{3}{28}=\frac{29}{28}\)
\(\frac{-6}{-35}:\frac{27}{180}+\frac{-3}{28}\)
\(=\frac{6}{35}\cdot\frac{180}{27}-\frac{3}{28}\)
\(=\frac{2\cdot3}{5\cdot7}\cdot\frac{5\cdot4\cdot9}{3\cdot9}-\frac{3}{28}\)
\(=\frac{8}{7}-\frac{3}{28}\)
\(=\frac{32}{28}-\frac{3}{28}\)
\(=\frac{29}{28}\)
232323/474747 = 232323/474747 : 11/11 = 23/47
376376/159159 = 376376/159159 : 1001/1001 = 376/159
232323/474747=232323:10101/474747:10101=23/47
376376/159159=376376:1001/159159:1001=376/159
\(3+3^2+.....+3^{99}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=39+3^3\left(3+3^2+3^3\right)+........+3^{96}\left(3+3^2+3^3\right)\)
\(=39+3^3\cdot39+...+3^{96}\cdot39\)
\(=39\left(1+3^3+....+3^{96}\right)\)
Vì \(39⋮13\Rightarrow39\in B\left(13\right)\)
\(\left(a\right):\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(2^4-4^2\right)\\ =\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left[2^4-\left(2^2\right)^2\right]\\ =\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(2^{2.2}-2^{2.2}\right)\\ =\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).0=0\)
\(\left(b\right):\left(8^{2017}-8^{2015}\right):\left(8^{2104}.8\right)\\ =\dfrac{8^{2015}.\left(8^2-1\right)}{8^{2104+1}}\\ =\dfrac{8^{2015}.63}{8^{2105}}=\dfrac{63}{8^{90}}\)
\(\left(c\right):\left(1^3+2^3+3^4+5^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\\ =\left(1^3+2^3+3^4+5^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8-\left(3^4\right)^2\right]\\ =\left(1^3+2^3+3^4+5^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^{4.2}-3^{4.2}\right)\\ =\left(1^3+2^3+3^4+5^5\right).\left(1^3+2^3+3^3+4^3\right).0=0\)
\(\left(d\right):\left(2^8+8^3\right):\left(2^5.2^3\right)\\ =\dfrac{2^8+\left(2^3\right)^3}{2^5.2^3}\\ =\dfrac{2^8+2^9}{2^{5+3}}\\ =\dfrac{2^8.\left(1+2\right)}{2^8}=3\)
3