Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\)
Đặt a = \(\sqrt{x^2+2x-1}\left(a\ge0\right)\) , ta đc pt: 2(1 - x).a = a2 - 4x => a2 - 2(1 - x)a - 4x = 0
Ta có: \(\Delta'=\left[-\left(1-x\right)\right]^2+4x=1-2x+x^2+4x=x^2+2x+1=\left(x+1\right)^2\)\(\Rightarrow\sqrt{\Delta'}=x+1\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=\frac{1-x+x+1}{1}=2\\a=\frac{1-x-x-1}{1}=-2x\left(vn\right)\end{array}\right.\)
+) Với a = 2 \(\Rightarrow\sqrt{x^2+2x-1}=2\Rightarrow x^2+2x-1=4\Rightarrow x^2+2x-5=0\Rightarrow\left[\begin{array}{nghiempt}x=-1+\sqrt{6}\\x=-1-\sqrt{6}\end{array}\right.\)
Vậy pt có 2 nghiệm \(\left[\begin{array}{nghiempt}x=-1+\sqrt{6}\\x=-1-\sqrt{6}\end{array}\right.\)
ĐK:...
\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\)
\(\Leftrightarrow2\left(1-x\right)\sqrt{\left(1+x\right)^2-2}=\left(1-x\right)^2-2\)
Đặt \(\begin{cases}a=1+x\\b=1-x\end{cases}\),ta có hệ:
\(\begin{cases}2b\sqrt{a^2-2}=b^2-2\\a+b=2\end{cases}\)
\(\Leftrightarrow\begin{cases}4a^2b^2-8b^2=b^4-4b^2+4\\a+b=2\end{cases}\)
\(\Leftrightarrow\begin{cases}4a^2b^2=b^4+4b^2+4\\a+b=2\end{cases}\)
\(\Leftrightarrow\begin{cases}2ab=b^2+2\\b=2-a\end{cases}\)hay\(\begin{cases}2ab=-b^2-2\\b=2-a\end{cases}\)
\(\Leftrightarrow2a\left(2-a\right)=\left(2-a\right)^2+2\)hay\(2a\left(2-a\right)=-\left(2-a\right)^2-2\)
\(\Leftrightarrow3a^2-8a+6=0\)hay a2=6
\(\Rightarrow\left[\begin{array}{nghiempt}a=x+1=\sqrt{6}\\a=x+1=-\sqrt{6}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-1+\sqrt{6}\\x=-1-\sqrt{6}\end{array}\right.\)
Đơn giản nhất là bình phương lên:
Đặt \(A=\left|2\overrightarrow{i}+2\overrightarrow{j}\right|\Rightarrow A^2=4\overrightarrow{i}^2+4\overrightarrow{j}^2+8\overrightarrow{i}.\overrightarrow{j}\)
Với chú ý rằng \(\overrightarrow{i};\overrightarrow{j}\) là các vecto đơn vị nên \(\overrightarrow{i}\perp\overrightarrow{j}\) và độ dài của chúng đều bằng 1
\(\Rightarrow A^2=4+4+0=8\Rightarrow A=2\sqrt{2}\)
\(\overrightarrow{i}\perp\overrightarrow{j}\Rightarrow\overrightarrow{i}.\overrightarrow{j}=0\) tính chất cơ bản của tích vô hướng
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
DO đó; OM là tia phân giác của góc AOB
Xét ΔOAM vuông tại A có
\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)
nên \(\widehat{AOM}=60^0\)
=>\(\widehat{AOB}=120^0\)
Mk gợi ý qua cho bn r bn tự lm tiếp nhá
1)ĐK:\(x\in\left[-2;2\right]\)
Dễ thấy :y=0 không là nghiệm của hệ
Chia cả 2 vế của pt(2) cho \(y^3\)ta đc:
\(\left(5-x\right)\sqrt{2-x}=\frac{8}{y^3}+\frac{6}{y}\)\(\Leftrightarrow\left(2-x\right)\sqrt{2-x}+3\sqrt{2-x}=\left(\frac{2}{y}\right)^3+3\left(\frac{2}{y}\right)\)
Xét hàm số:\(f\left(t\right)=t^3+3t\)
\(f'\left(t\right)=3t^2+3>0\)\(\Rightarrow\)hàm số liên tục và đồng biến trên R
\(\Rightarrow\sqrt{2-x}=\frac{2}{y}\)\(\Rightarrow y=\frac{2}{\sqrt{2-x}}\)
Thay vào pt(1) ta đc:
\(6\sqrt{2+x}+8\sqrt{4-x^2}=20-6x+12\sqrt{2-x}\)
\(\Leftrightarrow x=\frac{6}{5}\Rightarrow y=\sqrt{5}\)(t/m)
KL:...
Bình phương là nhanh nhất
kết wa : -x4-6x3-10x2-2x+3=0 nhớ loại nghiệm
Toán lớp 10 Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH §2. Phương trình quy về phương trình bậc nhất, bậc hai