Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
Bài 2:
a: Xét ΔAMN và ΔAMP có
AM chung
MN=MP
AN=AP
Do đó: ΔAMN=ΔAMP
a)xét ΔBEA và ΔBEC có:
\(\widehat{BEC}=\widehat{BEA}=90^o\)
AB=BC(ΔABC cân tại B)
\(\widehat{BCE}=\widehat{BAE}\)(ΔABC cân tại B)
⇒ΔBEA=ΔBEC (c.huyền.g.nhọn)
b)vì ΔBEA=ΔBEC nên AE=CE(2 cạnh tương ứng)
⇒E là trung điểm của AC
⇒BE là đường trung tuyến của ΔABC (đ.p.ch/m)(1)
c) Ta có:
vì D là trung điểm của BC⇒AD là đường trung tuyến của ΔABC(2)
từ (1)và(2) ⇒K là trọng tâm của ΔABC
⇒KD=\(\dfrac{1}{2}KA\)
xét ΔABK có:
KB+KA>AB(bất đẳng thức tam giác)
hay KB+2KD>AB
mà AB=BC
⇒KB+2KD>BC(đ.p.ch/m)
Bài 1:
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
chỉ tính câu b thôi, hay là bạn cần làm cả bài bạn nhỉ?
Bài 5:
Ta có : \(\widehat{A_1}+\widehat{A_3}=180^o\) (kề bù)
\(100^o+\widehat{A_3}=180^o\)
\(\widehat{A_3}=80^o\)
Ta có: \(\widehat{A_3}=\widehat{B_1}=80^o\)
\(\widehat{A_3}\) và \(\widehat{B_1}\) ở vị trí đồng vị
\(\Rightarrow AC//BD\)
\(\Rightarrow\widehat{C}_1=\widehat{D_1}=135^o\) (đồng vị)
\(x=135^o\)
b)
Ta có: \(\widehat{G_1}+\widehat{B_1}=180^o\left(120^o+60^o=180^o\right)\)
\(\widehat{G_1}\) và \(\widehat{B_1}\) ở vị trí trong cùng phía
\(\Rightarrow QH//BK\)
\(\Rightarrow\widehat{H_1}=\widehat{K_1}=90^o\)(so le)
\(x=90^o\)
Ta có: \(\dfrac{a}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3k\\b=5k\end{matrix}\right.\)
Ta có: \(\dfrac{2a-4b}{a-5b}\)
\(=\dfrac{2\cdot3k-4\cdot5k}{3k-5\cdot5k}=\dfrac{6k-20k}{3k-25k}\)
\(=\dfrac{-14k}{-22k}=\dfrac{7}{11}\)
1,Áp dụng định lý Pi-ta-go vào tam giác vuông AHB ta có:
\(AH^2+BH^2+AB^2\\
\Rightarrow x^2+4^2=\sqrt{52^2}\\
\Rightarrow x^2+16=52\\
\Rightarrow x^2=36\\
\Rightarrow x=6\left(vì.x>0\right)\)
Áp dụng định lý Pi-ta-go vào tam giác vuông AHC ta có:
\(AH^2+HC^2=AC^2\\ \Rightarrow6^2+9^2=y^2\\ \Rightarrow36+81=y^2\\ \Rightarrow117=y^2\\ \Rightarrow y=\sqrt{117}\left(vì.y>0\right)\)
2,Ta có BC=BH+HC=4+9=13
Ta có:\(AB^2+AC^2=\sqrt{52^2}+\sqrt{117^2}=52+117=169\)
\(BC^2=13^2=169\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pt-ta-go đảo)
a. Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+BH^2\)
\(\Rightarrow x=\sqrt{AB^2-BH^2}=\sqrt{\sqrt{52^2}-4^2}=\sqrt{52-16}=\sqrt{36}=6cm\)
Áp dụng định lý pitago vào tam giác vuông ACH
\(AC^2=AH^2+HC^2\)
\(\Rightarrow y=\sqrt{6^2+9^2}=\sqrt{117}=3\sqrt{13}\)
b. ta có: BC = 13 cm
AB = \(\sqrt{52}cm\)
\(AC=\sqrt{117}cm\)
Ta có: \(BC^2=AB^2+AC^2\)
\(13^2=\sqrt{52^2}+\sqrt{117^2}\)
\(169=169\) ( đúng )
Vậy tam giác ABC là tam giác vuông ( pitago đảo ) và vuông tại A