Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
a) \(=5x^2+40x+80+4\left(x^2-10x+25\right)-9\left(x+4\right)\left(x-4\right)\)
\(=5x^2+40x+80+4x^2-40x+100-9x^2+144\)
\(=9x^2-9x^2+40x-40x+324\)
\(=324\)
b) \(=x^2+4xy+4y^2+4x^2-4xy+y^2-5x^2+5y^2-10y^2+90\)
\(=5x^2-5x^2+10y^2-10y^2+\left(4xy-4xy\right)+90\)
\(=90\)
c)
\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)
\(=\left(2a^2-2a^2\right)+\left(2b^2-2b^2\right)+2c^2+4ab-4ab+2\left(ac+bc-ac-bc\right)\)
\(=2c^2\)
a) 5( x + 4 )2 + 4( x - 5 )2 - 9( 4 + x )( x - 4 )
= 5( x2 + 8x + 16 ) + 4( x2 - 10x + 25 ) - 9( x2 - 16 )
= 5x2 + 40x + 80 + 4x2 - 40x + 100 - 9x2 + 144
= ( 5x2 + 4x2 - 9x2 ) + ( 40x - 40x ) + ( 80 + 100 + 144 )
= 324
b) ( x + 2y )2 + ( 2x - y )2 - 5( x + y )( x - y ) - 10( y + 3 )( y - 3 )
= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5( x2 - y2 ) - 10( y2 - 9 )
= x2 + 4xy + 4y2 + 4x2 - 4xy + y2 - 5x2 + 5y2 - 10y2 + 90
= ( x2 + 4x2 - 5x2 ) + ( 4xy - 4xy ) + ( 4x2 + y2 + 5y2 - 10y2 ) + 90
= 90
c) ( a + b + c )2 + ( a + b - c )2 - 2( a + b )2
= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 - 2( a + b )2
= ( a + b )2 + 2( a + b )c + c2 + ( a + b )2 - 2( a + b )c + c2 - 2( a + b )2
= [ ( a + b )2 + ( a + b )2 - 2( a + b )2 ] + [ 2( a + b )c - 2( a + b )c ] + ( c2 + c2 )
= 2c2
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
a)2x(2x-y)+2y(x-2y)=\(4x^2-2xy+2xy-4y^2=4x^2-4y^2.\)
b)\(x\left(x^{n-1}+y^{n-1}\right)-y^{n-1}\left(x-y\right)\)=\(x^n+y^n-y^n+y^n=x^n+y^n\)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
\(a,A=\left(2x+y\right)^2-\left(2x-y\right)^2\\ =\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\\ =2y\cdot4x\\ =8xy\\ b,B=\left(x-2y\right)^2-4y\left(x-2y\right)+4y^2\\ =x^2-4xy+4y^2-4xy+8y^2+4y^2\\ =x^2+16y^2-8xy\\ =\left(x-4y\right)^2\)
a) A = [(2x + y) - (2x - y)] . [(2x +y) + (2x - y)]
b) B = [(x - 2y) - 2y]2