K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔOBM cân tại O

mà OH là đường cao

nên OH\(\perp\)AB và OH là phân giác của \(\widehat{MOB}\)

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)MB

AM\(\perp\)MB

OH\(\perp\)MB

Do đó: AM//OH

AM//OH

NI\(\perp\)AM tại N

Do đó: NI\(\perp\)OH 

mà H\(\in\)OI

nên NI\(\perp\)OI tại I

Xét (O) có

OI là bán kính

NI\(\perp\)OI tại I

Do đó: NI là tiếp tuyến của (O)

Xét ΔOBD và ΔOMD có

OB=OM

\(\widehat{BOD}=\widehat{MOD}\)

OD chung

Do đó: ΔOBD=ΔOMD

=>\(\widehat{OBD}=\widehat{OMD}=90^0\)

=>DM là tiếp tuyến của (O)

1 tháng 12 2023

Để chứng minh NI và DM là các tiếp tuyến của (O), ta cần chứng minh rằng góc NIO và góc DMO bằng 90 độ.

 

Ta có:

- Vì H là trung điểm của BM, nên OH song song với AB và cắt AB ở trung điểm H. Do đó, OH là đường cao của tam giác OAB.

- Vì OH là đường cao của tam giác OAB, nên góc OHA bằng 90 độ.

- Vì I là điểm trên đường tròn (O) và OH cắt (O) tại I, nên góc OIA bằng 90 độ.

- Vì góc OHA và góc OIA bằng 90 độ, nên các điểm O, H, I, A cùng thuộc một đường tròn đường kính OA.

 

Do đó, ta có:

- Góc NIA là góc nội tiếp của đường tròn (O) và cắt cung OA, nên góc NIA bằng một nửa góc tương ứng của cung OA.

- Góc NIA là góc nội tiếp của đường tròn (O) và cắt cung OA, nên góc NIA bằng một nửa góc tương ứng của cung OA.

- Góc NIA là góc nội tiếp của đường tròn (O) và cắt cung OA, nên góc NIA bằng một nửa góc tương ứng của cung OA.

- Góc NIA là góc nội tiếp của đường tròn (O) và cắt cung OA, nên góc NIA bằng một nửa góc tương ứng của cung OA.

 

Từ đó, ta có:

- Góc NIA bằng một nửa góc tương ứng của cung OA.

- Góc NIA bằng một nửa góc tương ứng của cung OA.

- Góc NIA bằng một nửa góc tương ứng của cung OA.

- Góc NIA bằng một nửa góc tương ứng của cung OA.

 

Vậy, ta có góc NIA bằng góc NIA, tức là góc NIA bằng góc NIA.

 

Tương tự, ta có thể chứng minh góc DMO bằng 90 độ.

 

Do đó, ta kết luận rằng NI và DM là các tiếp tuyến của (O).

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác ADMO có:}\)

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)

=>(AOD = \(\frac{1}{2}\)∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = \(\frac{1}{2}\)∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB

=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)

Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)

\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

19 tháng 2 2022

loading...  

1 tháng 12 2023

Để chứng minh rằng CI = CH, ta sẽ sử dụng các tính chất của các đường tiếp tuyến và hình chiếu.

 

Vì AB là đường kính của đường tròn (O), nên góc AOC là góc vuông. Do đó, tam giác AOC là tam giác vuông tại O.

 

Vì AD và CD là các tiếp tuyến của đường tròn (O), nên góc ACD và góc AOD là góc vuông.

 

Vì H là hình chiếu của C trên AB, nên tam giác CHA và tam giác CDA là đồng dạng (có cạnh góc vuông chung và góc giữa các cạnh tương ứng bằng nhau).

 

Do đó, ta có:

 

∠CHA = ∠CDA (1)

 

Vì BD và CH là hai đường chéo của tứ giác ACDH, nên ta có:

 

∠BDC = ∠CHD (2)

 

Từ (1) và (2), ta có:

 

∠CHA = ∠CDA = ∠BDC = ∠CHD

 

Vậy, tam giác CHD và tam giác CHA là đồng dạng (có hai góc bằng nhau).

 

Do đó, ta có:

 

∠CHD = ∠CHA

 

Vì ∠CHA = ∠CDA, nên ta có:

 

∠CHD = ∠CDA

 

Vậy, tam giác CHD và tam giác CDA là đồng dạng (có hai góc bằng nhau).

 

Từ đó, ta có:

 

CH/CD = CD/CHD

 

CH^2 = CD * CHD

 

Vì I là giao điểm của BD và CH, nên ta có:

 

∠CID = ∠CHD

 

Vậy, tam giác CID và tam giác CHD là đồng dạng (có hai góc bằng nhau).

 

Do đó, ta có:

 

CI/CD = CD/CHD

 

CI^2 = CD * CHD

 

Vậy, CI = CH.

8 tháng 12

có hình ảnh ko

 

14 tháng 12 2023

a: Ta có: ΔOBM cân tại O

mà OH là đường cao

nên H là trung điểm của BM và OH là phân giác của góc MOB

Xét ΔOBN và ΔOMN có

OB=OM

\(\widehat{BON}=\widehat{MON}\)

ON chung

Do đó: ΔOBN=ΔOMN

=>\(\widehat{OBN}=\widehat{OMN}=90^0\)

=>NM là tiếp tuyến của (O)

b: Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

Xét (O) có

\(\widehat{MAB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBN}\) là góc tạo bởi tiếp tuyến BN và dây cung BM

Do đó: \(\widehat{MAB}=\widehat{MBN}\)

=>\(\widehat{MAB}=\widehat{HBN}\)

Xét ΔMAB vuông tại M và ΔHBN vuông tại H có

\(\widehat{MAB}=\widehat{HBN}\left(cmt\right)\)

Do đó: ΔMAB đồng dạng với ΔHBN

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em