K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

a)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)

b)

 \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

c)

\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)

d) tương tự câu 1

8:

\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)

\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)

mà 20^10-1>20^10-3

nên A<B

30 tháng 4 2019

A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

A = 1 - 1/100

A = 99/100

B = 5/1*4 + 5/4*7 + .... + 5/100*103

B = 5/3*(3/1*4 + 3/4*7 + ... + 3/100*103)

B = 5/3*(1 -1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)

B = 5/3*(1 - 1/103)

B = 5/3* 102/103

30 tháng 4 2019

gọi ƯC(n + 1; n + 2) = d

=> n + 1 chia hết cho d và n + 2 chia hết cho d

=> n + 2 - n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = + 1

=> n+1/n+2 là phân số tối giản với mọi n là stn

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

15 tháng 4 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

10 tháng 10 2017

Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi  nhóm có 3 số liên tiếp nhau.

Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)

\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)

\(=2+2.7+2^5.7+.....+2^{98}.7\)

\(\Rightarrow\)Tổng này chia 7 dư 2

10 tháng 10 2017

bài 1

 abcabc=abc.1001

có 1001chia hết cho 7 

=>abc.1001 chia hết cho 7

còn chia hết cho 11 và 13 thì tương tự

bài 2

A=(2100+299+298)+...+(24+23+22)+21

A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21

A=298.(22+21+1)+...+22.(22+21+1)+21

A=298.7+...+22.7+21

A=(298+22).7 +21

có 7 chia hết co 7

=>(298+22).7 chia hết cho 7

=>Achia 7 dư 21

7 tháng 8 2015

thang Tran sai rồi vì nếu m = 98 ; n = 40 ; ta chia m cho n được 49/20 

thì m đâu có bằng 49   

7 tháng 8 2015

m/n = 1 + 1/2 + 1/3 + 1/4 + 1/5  + 1/6 

m/n= 49/20

=> m=  49 chia hết cho 7

=> ĐPCM 

 

25 tháng 10 2020

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

19 tháng 11 2023

Rrffhvyccbvfccvbbbhhgg