Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ ABC và △ AED ta có:
AB = AE ( gt )
\(\widehat{A_1}=\widehat{A_2}\) ( đối đỉnh )
AC = AD ( gt )
⇒ △ ABC = △ AED ( c - g - c )
b ) Vi △ ABC = △ AED ( cmt )
⇒ \(\widehat{D}=\widehat{C}\)
Mà 2 góc ở vị trí so le trong nên
⇒ DE // BC
c) Vì △ ABC = △ AED ( cmt )
⇒ BC = ED = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\) ED
⇒ DN = MC
Xét △ DNA và △ CMA có:
AD = AC ( gt )
\(\widehat{D}=\widehat{C}\)
DN = MC ( cm )
⇒ △ DNA = △ CMA ( c - g - c )
⇒ \(\widehat{DAN}=\widehat{CAM}\)
Do đó: N, A, M thẳng hàng
Bạn kham khảo link này nhé.
Câu hỏi của Cô nàng cá tính - Toán lớp 7 | Học trực tuyến
a: Xét ΔABC và ΔAED có
AB=AE
\(\widehat{BAC}=\widehat{EAD}\)
AC=AD
Do đó: ΔABC=ΔAED
a) Xét ΔABE và ΔADC có
AB=AD(gt)
\(\widehat{DAC}\) chung
AE=AC(gt)
Do đó: ΔABE=ΔADC(c-g-c)
Suy ra: BE=DC(hai cạnh tương ứng)
b) Ta có: ΔABE=ΔADC(cmt)
nên \(\widehat{ABE}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ABE}+\widehat{DBC}=180^0\)(hai góc kề bù)
và \(\widehat{ADC}+\widehat{ODE}=180^0\)(hai góc kề bù)
nên \(\widehat{OBC}=\widehat{ODE}\)
Xét ΔOBC và ΔODE có
\(\widehat{OBC}=\widehat{ODE}\)(cmt)
BC=DE
\(\widehat{OCB}=\widehat{OED}\)(ΔACD=ΔAEB)
Do đó: ΔOBC=ΔODE(g-c-g)
c) Ta có: AC=AE(gt)
nên A nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MC=ME(M là trung điểm của CE)
nên M nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của CE(đpcm)
a, xét hai tam giác ABM và ACM có AB=AC, MB=MC, AM chung ⇒⇒ ABM=ACM (c.c.c)
b, AB=AC nên ABC là tam giác cân, M là trung điểm BC nên AM vuông góc với BC
c,xét 2 tam giác AEH và CEM có EA=EC, EM=EH, góc MEC= góc HEA nên hai tam giác đó bằng nhau (c.g.c)
d, theo câu c đã có tam giác AEH=CEM nên góc AHE= góc CME. Hai góc này ở vị trí so le nên AH // BC (1)
tiếp tục xét 2 tam giác DKA và DMB, có góc KDA=DBM, DK = DM. Mặt khác ta thấy DMEA là hinhf bình hành nên ME=AD=DB ( do ME cũng là đường trung bình của ABC)
nên suy ra tam giác DKA=DMB suy ra góc AKD=BMD, hai góc này ở vị trí so le nên AK// BC(2)
Từ 1 và 2 suy ra AH và AK cùng nằm trên 1 đường thẳng hay K,H,A thẳng hàng...