Bài 7
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMHN có \(\widehat{CMH}=\widehat{CNH}=\widehat{MCN}=90^0\)
nên CMHN là hình chữ nhật

b: Gọi I là trung điểm của BH

=>I là tâm của đường tròn đường kính BH

ΔHNB vuông tại N

=>N nằm trên đường tròn đường kính BH

=>N nằm trên (I)

=>IH=IN

=>\(\widehat{IHN}=\widehat{INH}\)

mà \(\widehat{IHN}=\widehat{BAC}\)(hai góc đồng vị, HN//AC)

nên \(\widehat{INH}=\widehat{BAC}\)

CMHN là hình chữ nhật

=>\(\widehat{MCH}=\widehat{MNH}\)

=>\(\widehat{MNH}=\widehat{ACH}\)

\(\widehat{INM}=\widehat{INH}+\widehat{MNH}\)

\(=\widehat{BAC}+\widehat{ACH}=90^0\)

=>MN là tiếp tuyến của (I)

hay MN là tiếp tuyến của đường tròn đường kính BH

d: ΔCHO vuông tại H

=>CH<=CO

mà CH=MN

nên MN<=CO

Dấu '=' xảy ra khi H trùng với O

=>CO\(\perp\)AB tại O

Xét ΔCAB có

CO là đường trung tuyến

CO là đường cao

Do đó; ΔCAB cân tại C

Xét ΔCAB cân tại C có \(\widehat{ACB}=90^0\)

nên ΔCAB vuông cân tại C

=>\(\stackrel\frown{CA}=\stackrel\frown{CB}\)

=>C là điểm chính giữa của cung AB

27 tháng 5 2021

A B M P O H I N

c/

1/ Xét \(\Delta PMI\) và \(\Delta PBM\) có

\(\widehat{BPM}\) chung

\(sđ\widehat{IMP}=\frac{1}{2}sđ\) cung MI (Góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{PBM}=\frac{1}{2}sđ\)cung MI (Góc nội tiếp đường tròn)

\(\Rightarrow\widehat{IMP}=\widehat{PBM}\)

\(\Rightarrow\Delta PMI\) đồng dạng \(\Delta PBM\) (g.g.g) \(\Rightarrow\frac{PI}{PM}=\frac{PM}{PB}\Rightarrow PI.PB=PM^2\left(dpcm\right)\)

2/ Ta có

\(AB\perp PO\) (Hai tiếp tuyến cùng xp từ 1 điểm ở ngoài đường tròn thì đường nối điểm đó với tâm đường tròn vuông góc với đường nối 2 tiếp điểm)

Xét tg vuông PMO

\(PH.PO=PM^2\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh đó trên cạnh huyền với cạnh huyền) (đpcm)

3/

28 tháng 6 2021

A B O C D E M H K

a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)

       OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)

Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)

=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện  = 1800)

b) Xét \(\Delta\)EKD và \(\Delta\)EDB

có: \(\widehat{BED}\):chung

 \(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)

 => \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)

=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)

Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD

 OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD

Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)

Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)

Xét tam giác EHK và tam giác EBO

có: \(\widehat{OEB}\): chung

 \(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)

=> tam giác EHK ∽ tam giác EBO (c.g.c)

=> \(\widehat{EHK}=\widehat{KBA}\)

c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)

=> OM.EC = AE.MC

Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)

Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)

mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)

=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME

=> \(\frac{OM}{EM}=1\)

=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)

25 tháng 10 2015

Seu Vuon dễ thì làm đi xem nào

22 tháng 2 2016

Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99] 

Khoảng cách của từng số hạng là 3

Số số hạng là: (99-12):3+1=30(số)

Vậy có 30 số có 2 chữ số chia hết cho 3

28 tháng 1 2022

Bạn tự vẽ hình.

a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)

Mà \(OK< R\)

=> \(K\in xy\) và  \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E

b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)

AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)

=> B, C thuộc đường kính BC (2)

(1); (2) => K, B, C thuộc đường kính BC

Hay O, A, B, C, K cùng thuộc đường kính BC

c, \(AK\perp KO\)

=> \(\widehat{AKS}=90^o\)

=> K thuộc đường tròn đường kính AS (3)

=> \(AO\perp BC\) tại M

=> \(\widehat{AMS}=90^o\)

=> M thuộc đường tròn đường kính AS (4)

(3); (4) => AMKS nội tiếp