Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+7\cdot\left(2^2+2^5+...+2^{98}\right)\)
=>A không chia hết cho 7 mà là chia 7 dư 2 nha bạn
\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)
\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)
\(=3+2^2.3+...+2^{2020}.3⋮3\)
VẬY \(S⋮3\)
Trả lời :...........................................
SCSH: (2021 - 1) : 1 = 2020
Tổng: (2021 + 1) : 2 = 1011
Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhé
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
\(2+2^2+2^3+...+2^{11}+2^{12}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+2^7+2^{10}\right)\)chia hết cho \(7\).
a = 20 + 22 + 24 + ... + 218
= 1 + 22 + 24 + ... + 218
= ( 1 + 22 ) + ( 24 + 26 ) + ... + ( 216 + 218 )
= 5 + 24( 1 + 22 ) + ... + 216( 1 + 22 )
= 5.1 + 24.5 + ... + 216.5
= 5( 1 + 24 + ... + 216 ) chia hết cho 5 ( đpcm )
\(a=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)=\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+2^7+...+2^{99}\right)⋮3\)
(Chia hết cho 2)
+) Ta có: A = 2 + 2^2 + 2^3 + ... + 2^12
⇒ A = 2 (1 + 2 + 2^2 + ... + 2^11)
Vậy A chia hết cho 2
(Chia hết cho 3)
+) Ta có: A = 2 + 2^2 + 2^3 + ... + 2^12
⇒ A = (2 + 2^2) + (2^3 + 2^4) ... (2^11 + 2^12)
⇒ A = 2(1 + 2) + 2^3(1 + 2) + ... + 2^11(1 + 2)
⇒ A = 2.3 + 2^3.3 + 2^11.3
⇒ A = 3(2 + 2^3 + ... + 2^11)
Vậy A chia hết cho 3
(Chia hết cho 6)
+) Vì A chia hết cho 2; A chia hết cho 3
⇒ A chia hết cho 6
(Chia hết cho 7 mình ko biết làm <3)