K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

c: Xét ΔACD và ΔABE có 

AC=AB

AD=AE

CD=BE

Do đó: ΔACD=ΔABE

9 tháng 1 2022

k bt lm thì đừng có lm

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

c: Xét ΔACD và ΔABE có

AC=AB

CD=BE

AD=AE

Do đó: ΔACD=ΔABE

8 tháng 1 2022

vẽ giúp mk hình và lm giúp mk phần d vs ạ

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

hay AB=AC

b: Xét ΔABD và ΔACE có

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

c: Xét ΔACD và ΔABE có 

AC=AB

CD=BE

AD=AE

Do đó: ΔACD=ΔABE

d: Ta có: ΔABC can tại A

mà AH là đường cao

nên H là trung điểm của BC

Ta có: DB+BH=DH

CE+CH=HE

mà DB=CE

và BH=CH

nên DH=HE

hay H là trung điểm của DE

Xét ΔADE có AD=AE
nên ΔADE cân tại A

mà AH là đường trung tuyến

nên AH là tia phân giác của góc DAE

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

25 tháng 12 2016

.

25 tháng 12 2016

.

10 tháng 12 2016

Hình bạn tự vẽ nhé leuleu

a) Xét ΔABM và ΔACM có:

AB=AC (gt)

AM là cạnh chung

BM=CN (M là trung điểm của BC)

=> ΔABM=ΔACM (c-c-c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)

=> \(\widehat{AMB}+\widehat{AMB}=180^o\)

=> \(\widehat{AMB}=90^o\)

=> AM vuông góc với BC

b) Theo câu a ta có: ΔABM=ΔACMB

=> \(\widehat{ABM}=\widehat{ACM}\)

Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)

Xét ΔABD và ΔACE có:

AB=AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)

BD=CE (gt)

=> ΔABD=ΔACE (c-g-c)

=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)

Cũng theo câu a thì ΔABM=ΔACM

=> \(\widehat{BAM}=\widehat{CAM}\)

=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)

=> \(\widehat{DAM}=\widehat{EAM}\)

=> AM là tia phân giác của góc DAE

11 tháng 12 2016

ohook

2 tháng 3 2020

a, xét tam giác AMB và tam giác AMC có : AM chung

BM = CM do M là trung điểm của BC (gt)

AB = AC (gt)

=> tam giác AMB = tam giác AMC (c-c-c)

=> góc AMB = góc AMC (đn)

mà góc AMB + góc AMC = 180 (kb)

=> góc AMB = 90

=> AM _|_ BC (đn)

b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc ABC + góc ABD = 180 (kb)

góc ACB + góc ACE = 180 (kb)

=> góc ABD = góc ACE 

xét tam giác ABD và tam giác ACE có : BD = CE (gt)

AB = AC (gt)

=> tam giác ABD = tam giác ACE (c-g-c)

2 tháng 3 2020

còn c với d bạn

27 tháng 11 2016

A B C D E M 1 2 1 2

Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)

\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)

hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)

Xét \(\Delta ABD,\Delta ACE\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )

\(BD=CE\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)

b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)

\(BD=CE\left(gt\right)\)

\(\Rightarrow BM+BD=MC+CE\)

\(\Rightarrow MD=ME\) (**)

Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )

\(MD=ME\) ( theo (**) )

\(AM\): cạnh chung

\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)

\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )

\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)

Vậy...

27 tháng 11 2016

Ta có hình vẽ

A B C D E M a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)

\(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)

\(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)

Ta có: AB = AC (GT) (2)

BD = CE (GT) (3)

Từ (1),(2),(3) => tam giác ABD = tam giác ACE

=> AD = AE (2 cạnh tương ứng) (đpcm)

b/ Xét tam giác AMD và tam giác AME có:

AD = AE (đã chứng minh ở câu a)

AM: cạnh chung

\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME

=> tam giác AMD = tam giác AME (c.c.c)

=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)

=> AM là phân giác góc DAE (đpcm)