![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.3 Giải phương trình:
a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\))
\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)
\(\Leftrightarrow2x=2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{2}\)(tm)
b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)
\(\Leftrightarrow x=13+6\sqrt{5}\)(tm)
c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))
\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)
\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm)
1.4: Phân tích thành nhân tử:
a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)
\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1
\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)
b)
Với x >1, ta có:
A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)
\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)
Vậy không có x để A >-6
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ được rồi.
a) Xét đường tròn (O) có tiếp tuyến BA tại A nên \(\widehat{BAO}=90^0\)
Xét \(\Delta OBA\)và \(\Delta OBC\), ta có:
\(OA=OB\left(=R\right)\); \(BA=BC\left(gt\right)\)và OB chung \(\Rightarrow\Delta OBA=\Delta OBC\left(c.c.c\right)\Rightarrow\widehat{BAO}=\widehat{BCO}\)
Mà \(\widehat{BAO}=90^0\left(cmt\right)\Rightarrow\widehat{BCO}=90^0\)\(\Rightarrow BC\perp OC\)tại C \(\Rightarrow CB\)là tiếp tuyến tại C của (O;R) (đpcm thứ nhất)
Do \(BA=BC\left(gt\right)\Rightarrow\)B nằm trên đường trung trực của đoạn AC. (1)
Mặt khác \(OA=OC\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của đoạn AC (2)
Từ (1) và (2) \(\Rightarrow\)OB là đường trung trực của AC \(\Rightarrow OB\perp AC\)(3)
Vì AD là đường kính của (O) nên O là trung điểm AD \(\Rightarrow\)\(OA=\frac{AD}{2}\)và CO là trung tuyến của \(\Delta ACD\)
Lại có \(OC=OA\left(=R\right)\Rightarrow OC=\frac{AD}{2}\left(=OA\right)\)
Xét \(\Delta ACD\)có CO là trung tuyến, mà \(OC=\frac{AD}{2}\Rightarrow\)\(\Delta ACD\)vuông tại C \(\Rightarrow CD\perp AC\)(4)
Từ (3) và (4) \(\Rightarrow CD//OB\left(\perp AC\right)\)(đpcm thứ hai)
b) Gọi E là giao điểm của BC và AD.
\(\Delta ABE\)có \(C\in BE\); \(D\in AE\)và \(CD//OB\left(cmt\right)\)\(\Rightarrow\frac{CD}{OB}=\frac{EC}{EB}\)(hệ quả định lý Ta-lét) (5)
Dễ thấy \(CK//AB\left(\perp AD\right)\), tương tự như trên, ta có: \(\frac{CK}{AB}=\frac{EC}{EB}\)(6)
Từ (5) và (6) \(\Rightarrow\frac{CD}{OB}=\frac{CK}{AB}\left(=\frac{EC}{EB}\right)\Rightarrow CD.AB=OB.CK\)
Lại có \(AB=BC\left(gt\right)\)\(\Rightarrow BC.CD=OB.CK\)(đpcm)
chao cac ban minh la tram