Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét ΔMBD và ΔMCA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
Do đó: ΔMBD=ΔMCA
=>\(\widehat{MBD}=\widehat{MCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//AC
c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có
DB=AC
\(\widehat{DBK}=\widehat{ACH}\)
Do đó: ΔDKB=ΔAHC
=>BK=CH
d: Xét tứ giác ABCE có
I là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE và AB=CE
Ta có; ΔMAB=ΔMDC
=>AB=DC
Ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
Ta có: AB//DC
AB//CE
DC,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
ta có: AB=CD
AB=CE
Do đó: DC=CE
mà D,C,E thẳng hàng
nên C là trung điểm của DE
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ta có: ΔAMB=ΔDMC
nên AB=DC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ta có; ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
c: Xét ΔNAB và ΔNCE có
NA=NC
\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)
NB=NE
Do đó: ΔNAB=ΔNCE
=>AB=CE
Ta có: ΔNAB=ΔNCE
=>\(\widehat{NAB}=\widehat{NCE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB//CD
CE,CD có điểm chung là C
Do đó: E,C,D thẳng hàng
Ta có: EC=AB
CD=AB
Do đó: EC=CD
mà E,C,D thẳng hàng
nên C là trung điểm của ED
bạn ơi cái đó bạn lên gu gồ í chứ bài toán họ có giải và chỉ cách làm nơi á bạn cố gắng nha
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
XétΔCAD có
CM là đường cao
CM là đường trung tuyến
Do đó: ΔCAD cân tại C
Ta có: ΔCAD cân tại C
mà CM là đường cao
nên CM là phân giác của góc ACD
=>CB là phân giác của góc ACD
a) Xét tam giác AMB và tam giác DMC:
AM = DM (gt).
BM = CM (M là trung điểm của cạnh BC).
\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Xét tam giác ABD và tam giác DCA:
AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)
AD chung.
\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)
\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)
Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)
Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)
\(\Rightarrow AB+AC>2AM.\)