K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

Xét 2 tam giác : Tam giác ADB và tam giác BCA có :

AB−Cạnh chung

^DAB=^CBA(Tính chất của hình thang cân)

AC=BD(Tính chất của hình thang cân)

⇒ΔADB=ΔBCA(c−g−c)

⇒ˆCAB=ˆDBA(2 góc tương ứng)

⇒ˆOAB=ˆOBA

=> Tam giác OAB cân

=> OA = OB

=> Điều phải chứng minh

26 tháng 8 2021

Do AB // CD ( GT )

⇒^A+^C=180o

⇒2^C+^C=180o

⇒3^C=180o

⇒^C=60o

⇒  ^A = 60o * 2 = 120o

Do ABCD là hình thang cân

⇒  ^C = ^D

Mà ^C = 60o

⇒   ^D = 60o

AB // CD ⇒ ^D +  ^B = 180o

⇒ˆB=180o − 60o = 120o

Vậy   ^A  = ^B  =  120o      ;      ^C= ^D = 60o

26 tháng 8 2021

Xét 2 tam giác : Tam giác ADB và tam giác BCA có :

AB : Cạnh chung

^DAB=^CBA   (Tính chất của hình thang cân)   

AC  =  BD   ( Tính chất của hình thang cân)   

⇒    ΔADB = ΔBCA       ( c−g−c)

⇒   ^CAB   =  ^DBA    (2 góc tương ứng)

⇒   ^OAB  =  ^OBA

=> Tam giác OAB cân

=> OA = OB

=> Điều phải chứng minh

a: Xét ΔABC và ΔBAD có

AB chung

BC=AD

AC=BD

=>ΔABC=ΔBAD

=>góc OBA=góc OAB

=>OA=OB

OA+OC=AC

OB+OD=BD

mà OA=OB và AC=BD

nên OC=OD

b: Xét ΔEDC có AB//DC

nên EA/AD=EB/BC

mà AD=BC

nên EA=EB

EA+AD=ED

EB+BC=EC

mà EA=EB và AD=BC

nên ED=EC

EA=EB

OA=OB

=>EO là trung trực của AB

EC=ED

OC=OD

=>EO là trung trực của CD

6 tháng 8 2023

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a ) Xét ADC và BCD, ta có:

AD = BC (tính chất hình thang cân)

(ADC) = (BCD) (gt)

DC chung

Do đó: ADC = BCD (c.g.c) ⇒ ∠�1∠�1

Trong OCD ta có: ∠�1∠�1 ⇒ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

b)

 

���^=���^(��)⇒���^=���^ 

⇒ ∆ OCD cân tại O

⇒ OC = OD

⇒ OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ∆ ADC và ∆ BCD :

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.c.c)

⇒�^1=�^1

⇒ ∆ EDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực của CD

OC = OD nên O thuộc đường trung trực của CD

E≢ O. Vậy OE là đường trung trực của CD.

BD = AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

E≢ O. Vậy OE là đường trung trực của AB.

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ                 a) Chứng minh ABCD là hình thang cân        ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

 

0
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ                 a) Chứng minh ABCD là hình thang cân        ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

   
0
28 tháng 8 2016

1. 

O A B D C E

+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC

=> tam giác ODC cân tại O => OD = OC  

 mà AD = BC => OA = OB

+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA 

=> Tam giác ODB = OCA (c - g - c)

=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA

=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)

Từ (1)(2) => OE là đường  trung trực của CD

=> OE vuông góc CD mà CD // AB => OE vuông góc với AB

Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường  trung trực

vậy OE là đường trung trực của AB