Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow23x+53y=23.37-53.14\)
\(\Leftrightarrow53y+53.14=23.37-23x\)
\(\Leftrightarrow53\left(y+14\right)=23\left(37-x\right)\)
Do 53 và 23 nguyên tố cùng nhau \(\Rightarrow y+14⋮23\)
\(\Rightarrow y+14=23k\Rightarrow y=23k-14\)
\(\Rightarrow x=-53k+37\)
Vậy nghiệm của pt là \(\left(x;y\right)=\left(-53k+37;23k-14\right)\) với \(k\in Z\)
a: =>10x-14=15-9x
=>19x=29
hay x=29/19
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x+9=32x+60
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>101x=101
hay x=1
d: \(\Leftrightarrow12\left(\dfrac{1}{2}-\dfrac{3}{2}x\right)=-5x+6\)
\(\Leftrightarrow6-18x+5x-6=0\)
=>-13x=0
hay x=0
\(a,\dfrac{5x-7}{3}=\dfrac{5-3x}{2}\\ \Leftrightarrow2\left(5x-7\right)=3\left(5-3x\right)\\ \Leftrightarrow10x-14=15-9x\\ \Leftrightarrow10x-14-15+9x=0\\ \Leftrightarrow19x-19=0\\ \Leftrightarrow x=1\)
\(b,\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\\ \Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\\ \Leftrightarrow30x+9=36+24+32x\\ \Leftrightarrow36+24+32x-30x-9=0\\ \Leftrightarrow2x+51=0\\ \Leftrightarrow x=-\dfrac{51}{2}\)
\(c,\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{7x-1+12x}{6}=\dfrac{16-x}{5}\\ \Leftrightarrow5\left(19x-1\right)=6\left(16-x\right)\\ \Leftrightarrow95x-5=96-6x\\ \Leftrightarrow95x-5-96+6x=0\\ \Leftrightarrow101x-101=0\\ \Leftrightarrow x=1\)
\(d,4\left(0,5-1,5x\right)=-\dfrac{5x-6}{3}\\ \Leftrightarrow12\left(0,5-1,5x\right)=6-5x\\ \Leftrightarrow6-18x=6-5x\\ \Leftrightarrow6-5x-6+18x=0\\ \Leftrightarrow13x=0\\ \Leftrightarrow x=0\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
a.ta có \(\left(x+3\right)\left(y-7\right)=-21\Rightarrow y-7\in\left\{-3,-1\right\}\) ( do x+3>3 và 0>y-7>-7)
\(\Rightarrow\hept{\begin{cases}y=4\\x=4\end{cases}\text{ hoặc }}\hept{\begin{cases}y=6\\x=18\end{cases}}\)
c. \(\left(x-5\right)\left(y-5\right)=26=2\cdot13\Rightarrow x-5\in\left\{-2,-1,1,2,13,26\right\}\)
suy ra \(\left(x,y\right)\in\left\{\left(6,31\right);\left(31,6\right);\left(7,18\right);\left(18,7\right)\right\}\)
b.\(4xy+5y-14x=3\Leftrightarrow8xy+10y-28x=6\)
\(\Leftrightarrow\left(4x+5\right)\left(2y-7\right)=-29\)
mà 4x+5>5\(\Rightarrow4x+5=29\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
*Sử dụng phương pháp chặn (hai đầu):
\(x\left(x^2+2x+4\right)=y^3-3\left(1\right)\)
\(\Leftrightarrow2x^2+4x+3=y^3-x^3\)
Ta có \(2x^2+4x+3=2\left(x+1\right)^2+1>0\)
\(\Rightarrow y^3-x^3>0\Rightarrow y^3>x^3\left(2\right)\)
Lại có: \(\left(x+2\right)^3-y^3=\left(x^3+6x^2+12x+8\right)-\left(x^3+2x^2+4x+3\right)=4x^2+8x+5=4\left(x+1\right)^2+1>0\)
\(\Rightarrow y^3< \left(x+2\right)^3\left(3\right)\)
Từ (2), (3) suy ra \(x^3< y^3< \left(x+2\right)^3\Rightarrow y^3=\left(x+1\right)^3\).
Thay vào (1) ta được:
\(x^3+2x^2+4x=\left(x+1\right)^3-3\)
\(\Leftrightarrow x^3+2x^2+4x=x^3+3x^2+3x+1-3\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Với \(x=2\Rightarrow y=3\)
Với \(x=-1\Rightarrow y=0\)
Vậy các nghiệm nguyên của pt (1) là \(\left(x;y\right)=\left(2;3\right),\left(-1;0\right)\)
a) \(\left(5,11\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(3;1\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=3+11t\\y=1+5t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
b) \(\left(7,5\right)=1\) nên phương trình có vô số nghiệm.
Phương trình có một nghiệm là \(\left(4;23\right)\) nên nghiệm tổng quát của phương trình trên là
\(\left\{{}\begin{matrix}x=4+5t\\y=23-7t\end{matrix}\right.\), \(t \in \mathbb{Z}\).
c) Bạn đọc tự giải.