K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=5x^2+6x^2+3y+7y=11x^2+10y

B=7x^3+6x^3+6y+5y+36=13x^3+11y+36

C=-8x^5-x^5+3y^4-10y^4=-9x^5-7y^4

C=x^2-5x^2+y^2-6y^2=-4x^2-5y^2

12 tháng 3 2022

a, bậc 6 

b, bậc 6 

c, bậc 12 

d, bậc 9 

e, bậc 8 

13 tháng 4 2022

huhu

5 tháng 4 2019

=-1/2x^2+5x^2y^3-8x^3y^2-5x^2y^3+7x^3y^2-6x^2-5/3y

=(-1/2x^2+6x^2)+(5x^2y^3-5x^2y^3)+(-8x^3y^2-7x^3y^2)+5/3y

=11/2x^2+0-15x^3y^2+5/3y

=11/2x^2-15x^3y^2+5/3y

thay x=-1/2 , y=25 vào giá trị biểu thức M ta đc

       11/2.(-1/2)^2-15.(-1/2)^3.25^2+5/3.25=7273/6

   vậy tại x=-1/2 , y=25 vào giá trị biểu thức M có giá trị là 7273/6

23 tháng 3 2018

Mik viết lại đề bài !

Thu gọn đa thức :

\(x^3y^4-x^2y^2+y^6-5x^3y^4-6x^2y^2+3y^6-5x^2y^2+4y^6\\ =x^2y^4\left(1-5\right)-x^2y^2\left(1+6+5\right)+y^6\left(1+3+4\right)\\ =-4x^2y^4-12x^2y^2+8y^6\\ =4y^2\left(-x^2y^2-3x^2+2y^4\right)\)

2 tháng 6 2018

b và ''le thi hong van'' là 1, chắc chắn luôn, vì b ấy toàn nick cho b thôi :))

11 tháng 3 2017

Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có:     \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)

Ta thấy:        \(x^4\ge0\) \(\forall x\)   \(;\)         \(x^2y^2\ge0\)\(\forall x,y\)       \(;\)         \(y^4\ge0\)\(\forall y\)
     \(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\)                  \(\forall x,y\)
     \(\Rightarrow\)\(A.B.C\)nhận giá trị dương
     \(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y 
      \(\Rightarrow\)\(dpcm\)

a: P(x)=5x^3+3x^2-2x-5

\(Q\left(x\right)=5x^3+2x^2-2x+4\)

b: P(x)-Q(x)=x^2-9

P(x)+Q(x)=10x^3+5x^2-4x-1

c: P(x)-Q(x)=0

=>x^2-9=0

=>x=3; x=-3

d: C=A*B=-7/2x^6y^4

Ta có:

M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)

= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7

= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7

= 3x^2y^2 + 2y^2 + 7x^4 + 7

x^2≥0;y^2≥0⇒3x^2y^2≥0​ (1)

y^2≥0⇒2y^2≥0(2)

x4≥0⇒7x4≥0 (3)

7 > 0 (4)

Từ (1), (2)(3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0

Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y