K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

6 tháng 12 2016

đợi mình 5 phút

6 tháng 12 2016

                                                                                  Giải

a) vì m la trung diểm của BC => BM=MC

Xét tam giac BAM va tam giac MAC có:

AB=AC(dề bài cho)

BM=MC(Chung minh tren)

AM la cạnh chung(de bai cho)

=>Tam giác BAM=tam giac MAC(c.c.c)

b)từ trên

=>góc BAM=góc MAC(hai goc tuong ung)

Tia AM nam giua goc BAC (1)

goc BAM=goc MAC(2)

từ (1) va (2)

=>AM la tia phan giac cua goc BAC

c)Còn nữa ......-->

13 tháng 12 2017

xét tam giác ame và tam giác bmc

me=mc (gt)

góc ema= góc bmc (đối đỉnh)

am=bm( m là trung điểm của ab)

=> tam giác ame= tam giác bmc(c.g.c)

=> góc eam= góc cbm ( 2 cạnh tương ứng)

mà góc eam và góc cbm SLT

=>ae //bc

xét tam giác afn và tam giác cbn

fn=bn (gt)

góc an f= góc bnc (đ đ)

an=cn ( n là trung điểm của ac)

=> tam giác a fn= tam giác cbn (c.g.c)

=> a f=cb (2 cạnh t ung)

mà ae=cb (tam giác ame= tam giác bmc)

=>a f= ae (=cb)

=> a là trung điểm của e f

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

20 tháng 12 2019

Hình tự vẽ. 

a) Xét tam giác ADE và tam giác ABC có:

AD=AB(gt) 

DAE=BAC(đối đỉnh) 

AE=AC(gt) 

=>Tam giác ADE=tam giác ABC(c.g.c) 

=>DEA=ACB(2 góc tương ứng) 

Mà hai góc ở vị trí so le trong

=>ED//BC

b) Xét tam giác DAN và tam giác BAM  có:

NDA=ABM(tam giác ADE=tam giác ABC) 

AD=AB(gt)

DAN=BAM(đối đỉnh) 

=>Tam giác DAN=tam giác BAM(g.c.g) 

=>AN=AM

=>A là trung điểm MN

23 tháng 1 2022

a) Xét ▲ABD và ▲ACD có:

\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))

AB=AC (▲ABC cân tại A).

AD là cạnh chung.

=>▲ABD = ▲ACD (c-g-c)

=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)

\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)

Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)

=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD⊥BC tại D (2)

- Từ (1) và (2) suy ra: AD là đường trung trực của BC.

b) Xét ▲AIF và ▲AIE có:

\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )

AF=AE (gt)

AI là cạnh chung.

=>▲AIF = ▲AIE  (c-g-c)

=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)

\(\widehat{AEI}=90^0\)(BE⊥AC tại E)

=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.

c) Xét ▲ABC có:

AD là đường cao (AD⊥BC tại I)

BE là đường cao (BE⊥AC tại E)

AD cắt BE tại I (gt)

=> I là trực tâm của ▲ABC.

=>CI⊥AB mà IF⊥AB (cmt)

=>CI trùng với IF hay C,I,F thẳng hàng.

23 tháng 1 2022

Thanksvui