Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD
c) Ta có AB vuông góc BK; AB vuông góc CH => BK//CH
tương tự BH//CK => tứ giác BHCK là hình bình hành mà M là trung điểm BC => M là trugn điểm HK => H,M,K thẳng hàng
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
Do đo: ΔADB đồng dạng với ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
Do đó: ΔADE đồng dạng với ΔABC
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
Do đó: ΔHEB đồng dạng với ΔHDC
Suy ra: HE/HD=HB/HC
hay \(HE\cdot HC=HB\cdot HD\)
c: Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó:BHCK là hình bình hành
Suy ra: BC cắt HK tại trung điểm của mỗi đường
=>M là trung điểm của HK
hay H,M,K thẳng hàng