K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Bài 1

a. (Tự vẽ hình)

Áp dụng định lí Py-ta-go, ta có:

BC2= AB2 + AC2

<=> BC2= 62 + 82

<=> BC2= 100

=> BC = 10 (cm)

18 tháng 3 2020

Bài 1

b. Áp dụng định lí Py-ta-go, ta có:

AC= AH2 + HC2

<=> 8= 4,82 + HC2

<=> 64 = 23,04 + HC2

=> HC= 64 - 23,04 

=> HC= 40,96

=> HC = 6,4 (cm)

=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
16 tháng 1 2017

A B C D E G F H M N

ta có góc DAC = góc EAB = 90 độ (gt)

suy ra \(\widehat{DAB}+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}\) (vì tia AB nằm giữa 2 tia AD và AC , tia AC nằm giữa 2 tia AE và AB )

hay \(\widehat{DAC}=\widehat{EAB}\)

\(\Delta DAC\)\(\Delta BAE\)có \(\hept{\begin{cases}AD=AB\left(gt\right)\\\widehat{DAC}=\widehat{EAB}\left(cmt\right)\\AE=AC\left(gt\right)\end{cases}}\)

do đó \(\Delta DAC=\Delta BAE\left(c.g.c\right)\)

suy ra \(DC=BE\)(2 góc tương ứng)

và \(\widehat{EBA}=\widehat{CDA}\)( 2 góc tương ứng )

gọi giao điểm của AB và CD là G , giao điểm của DC và BE là F 

\(\Delta ADG\)và \(\Delta GBF\)có \(\hept{\begin{cases}\widehat{D}=\widehat{B}\left(cmt\right)\\\widehat{DGA}=\widehat{BGF}\\\Rightarrow\widehat{BFG}=\widehat{DAG}=90^o\end{cases}}\)(đối đỉnh)

hay \(BE⊥DC\)

b) ta có góc DAH là góc ngoài của tam giác AMD 

suy ra \(\widehat{DAH}=\widehat{AMD}+\widehat{ADM}\) hay \(\widehat{DAB}+\widehat{BAH}=\widehat{AMD}+\widehat{ADM}\)(vì tia AB nằm giữa 2 tia AD và AH )

mà \(\widehat{DAB}=\widehat{AMD}=90^o\)\(\Rightarrow\widehat{BAH}=\widehat{ADM}\)

\(\Delta ABH\)\(\Delta DAM\)có \(\hept{\begin{cases}DA=BA\left(gt\right)\\\widehat{BAH}=\widehat{ADM}\left(cmt\right)\end{cases}}\)

do đó \(\Delta ABH=\Delta DAM\)(cạnh huyền - góc nhọn )

suy ra AH =DM ( 2 cạnh tương ứng )

theo đề và từ hình vẽ ta có MN trùng AH

ta có góc EAH là góc ngoài của tam giác ANE  

\(\Rightarrow\widehat{EAH}=\widehat{ANE}+\widehat{AEN} hay \widehat{EAC}+\widehat{HAC}=\widehat{ANE}+\widehat{AEN}\)

mà \(\widehat{EAC}=\widehat{ANE}=90^o\)\(\Rightarrow\widehat{HAC}=\widehat{AEN}\)

\(\Delta ACH\)\(\Delta EAN\)có  

cạnh huyền AC = cạnh huyền AE

\(\widehat{HAC}=\widehat{AEN}\left(cmt\right)\)

do đó \(\Delta ACH=\Delta EAN\)(cạnh huyền góc nhọn )

suy ra AH = NE ( 2 cạnh tương ứng )

mà AH =DM

suy ra DM = NE 

ta có \(DM⊥NH;EN⊥NH\Rightarrow\)DM//EN

gọi giao điểm của DE và NH là T

xét tam giác vuông MTD và tam giác vuông NTE

góc MDT  = góc NET ( so le trong )

DM = NE (cmt) 

do đó \(\Delta MDT=\Delta NET\)(cạnh huyền góc nhọn )

suy ra DN = NE ( 2 cạnh tương ứng ) (1)

\(\Delta MDT\)và \(\Delta NET\)có \(\hept{\begin{cases}\widehat{MDT}=\widehat{NET}\\\widehat{DMT}=\widehat{ENT}=90^o\\\Rightarrow\widehat{DTM}=\widehat{ETN}\end{cases}}\)

ta có \(\widehat{NTE}+\widehat{MTE}=180^o\)( kề bù )

mà \(\widehat{NTE}=\widehat{DTM}\left(cmt\right)\)\(\Rightarrow\widehat{MTE}+\widehat{DTM}=180^o\)hay D;N;E thẳng hàng (2)

từ (1) và (2) suy ra N là trung điểm D;E 

hay MN và AH đi qua trung điểm DE

câu c gửi bạn sau mk đi học r

chúc bạn học tốt

1, Cho tam giác ABC vuông cân tại A. Từ A kẻ đường thẳng d nằm ngoài tam giác ABC. Kẻ BD vuông góc với d tại D, CE vuông góc với d tại E. Gọi M là trung điểm của BC. Chứng minh rằng:a, BD+CE=DE?b, Tam giác MDE vuông cân?2, Cho đoạn thẳng AB, lấy C nằm giữa A và B. Tên cùng NMP bờ AB vẽ 2 tam giác đều ACD và BCE. Gọi M và N lần lượt là trung điểm của AE và BD. Chứng minh tam giác MNC đều.3, Cho góc xOy...
Đọc tiếp

1, Cho tam giác ABC vuông cân tại A. Từ A kẻ đường thẳng d nằm ngoài tam giác ABC. Kẻ BD vuông góc với d tại D, CE vuông góc với d tại E. Gọi M là trung điểm của BC. Chứng minh rằng:

a, BD+CE=DE?

b, Tam giác MDE vuông cân?

2, Cho đoạn thẳng AB, lấy C nằm giữa A và B. Tên cùng NMP bờ AB vẽ 2 tam giác đều ACD và BCE. Gọi M và N lần lượt là trung điểm của AE và BD. Chứng minh tam giác MNC đều.

3, Cho góc xOy vuông, Oz là TPG của góc xOy. Gọi M là điểm tùy ý, khác trung điểm trên Oz. Vẽ MA vuông góc với Ox tại A, MB vuông góc với Oy tại B. CMR:

a, OA=OB?

b, Trên đoạn thẳng AM lấy I bất kì ( khác trung điểm ); Nối I với O, lấy K trên MB sao cho góc AIO = góc KIO. Tính góc IOK?

Mình đang rất gấp, các bạn giải nhanh giùm mình nhé, cảm ơn các bạn rất nhiều ^^

0
Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BCBài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp...
Đọc tiếp

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC

Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.

Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:

a. EF//KI. b.EI=KF; c.KF=CD/2

Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:

a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN

 

Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!

0