K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: BC=BH+CH=4+9=13(cm)

Xét ΔHAB vuông tại H và ΔACB vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔHAB~ΔACB

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BA^2=BH\cdot BC=4\cdot13=52\)

=>\(BA=\sqrt{52}=2\sqrt{13}\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)

=>\(AC=\sqrt{117}=3\sqrt{13}\left(cm\right)\)

2: ΔHAB~ΔACB

=>\(\dfrac{HA}{AC}=\dfrac{AB}{CB}\)

=>\(HA=\dfrac{AB\cdot AC}{BC}=\dfrac{2\sqrt{13}\cdot3\sqrt{13}}{13}=6\left(cm\right)\)

Xét tứ giác AKHE có \(\widehat{AKH}=\widehat{AEH}=\widehat{KAE}=90^0\)

nên AKHE là hình chữ nhật

=>AH=KE

=>KE=6(cm)

3: Xét ΔAKH vuông tại K và ΔAHB vuông tại H có

\(\widehat{HAB}\) chung

Do đó: ΔAKH~ΔAHB

=>\(\dfrac{AK}{AH}=\dfrac{AH}{AB}\)

=>\(AH^2=AK\cdot AB\left(1\right)\)

Xét ΔAEH vuông tại E và ΔAHC vuông tại H có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔAHC

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

=>\(AH^2=AE\cdot AC\left(2\right)\)

Từ (1),(2) suy ra \(AK\cdot AB=AE\cdot AC\)

=>\(\dfrac{AK}{AC}=\dfrac{AE}{AB}\)

Xét ΔAKE vuông tại A và ΔACB vuông tại A có

\(\dfrac{AK}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔAKE~ΔACB

4: ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên IA=IC

=>ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

ΔAKE~ΔACB

=>\(\widehat{AEK}=\widehat{ABC}\)

Ta có: \(\widehat{AEK}+\widehat{IAC}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>EK\(\perp\)AI tại N

15 tháng 6
Bài giải:

1. Tính AB, AC:

  • Áp dụng định lý Pitago trong tam giác vuông AHB:
    • AB² = AH² + HB²
    • AH² = AB² - HB²
  • Áp dụng định lý Pitago trong tam giác vuông AHC:
    • AC² = AH² + HC²
    • AH² = AC² - HC²
  • Từ hai phương trình trên, ta có: AB² - HB² = AC² - HC²
  • Suy ra: AB² = AC² - HC² + HB²
  • Thay số: AB² = AC² - 9² + 4² = AC² - 65
  • Áp dụng định lý Pitago trong tam giác vuông ABC:
    • BC² = AB² + AC²
    • BC² = (AC² - 65) + AC² = 2AC² - 65
  • Thay BC = HB + HC = 4 + 9 = 13
    • 13² = 2AC² - 65
    • 2AC² = 13² + 65 = 224
    • AC² = 112
    • AC = √112 = 4√7 cm
  • Thay AC vào phương trình AB² = AC² - 65:
    • AB² = (4√7)² - 65 = 112 - 65 = 47
    • AB = √47 cm

2. Tính KE:

  • Áp dụng định lý Pitago trong tam giác vuông AKE:
    • KE² = AK² + AE²
  • Áp dụng định lý Pitago trong tam giác vuông AHB:
    • AK² = AH² - HK²
  • Áp dụng định lý Pitago trong tam giác vuông AHC:
    • AE² = AH² - HE²
  • Thay vào phương trình KE²:
    • KE² = (AH² - HK²) + (AH² - HE²) = 2AH² - (HK² + HE²)
  • Ta có: HK + HE = BC = 13 cm
  • Áp dụng định lý Pitago trong tam giác vuông HKE:
    • KE² = HK² + HE² = (HK + HE)² - 2HK.HE = 13² - 2HK.HE
  • Suy ra: 2AH² - (HK² + HE²) = 13² - 2HK.HE
  • 2AH² = 13² + 2HK.HE
  • AH² = (13² + 2HK.HE) / 2
  • Thay AH² = AB² - HB²:
    • AB² - HB² = (13² + 2HK.HE) / 2
    • 2(AB² - HB²) = 13² + 2HK.HE
    • 2HK.HE = 2(AB² - HB²) - 13²
    • HK.HE = (AB² - HB²) - 13²/2
    • HK.HE = (47 - 4²) - 13²/2 = -65/2
  • Vì HK và HE đều dương nên HK.HE = -65/2 là vô lý.
  • Vậy, không thể tính KE bằng cách này.

3. Chứng minh AB.AK = AE.AC; AKE ~ ACB:

  • Chứng minh AB.AK = AE.AC:
    • Xét tam giác vuông AHB và tam giác vuông AHC, ta có:
      • Góc BAH = Góc CAH (cùng bằng 90 độ)
      • Góc ABH = Góc ACH (cùng phụ với góc BAH)
    • Suy ra tam giác AHB đồng dạng với tam giác AHC (g-g)
    • Do đó: AB/AC = AH/AH = 1
    • Suy ra: AB = AC
    • Xét tam giác vuông AKE và tam giác vuông ACB, ta có:
      • Góc KAE = Góc CAB (cùng bằng 90 độ)
      • Góc AKE = Góc ACB (cùng phụ với góc KAE)
    • Suy ra tam giác AKE đồng dạng với tam giác ACB (g-g)
    • Do đó: AK/AC = AE/AB
    • Suy ra: AB.AK = AE.AC
  • Chứng minh AKE ~ ACB:
    • Xét tam giác vuông AKE và tam giác vuông ACB, ta có:
      • Góc KAE = Góc CAB (cùng bằng 90 độ)
      • Góc AKE = Góc ACB (cùng phụ với góc KAE)
    • Suy ra tam giác AKE đồng dạng với tam giác ACB (g-g)

4. Chứng minh AI vuông góc KE tại N:

  • Xét tam giác ABC:
    • I là trung điểm của BC nên AI là đường trung tuyến của tam giác ABC.
  • Xét tam giác AKE:
    • N là giao điểm của AI và KE nên N là trọng tâm của tam giác AKE.
  • Theo tính chất trọng tâm của tam giác:
    • Trọng tâm của tam giác cách mỗi đỉnh một khoảng bằng 2/3 độ dài đường trung tuyến đi qua đỉnh đó.
    • Do đó: AN = 2/3 AI
  • Xét tam giác vuông AHI:
    • AI là đường trung tuyến của tam giác vuông AHI nên AI = 1/2 HI.
  • Suy ra:
    • AN = 2/3 AI = 2/3 * (1/2 HI) = 1/3 HI
    • Do đó: IN = AI - AN = 1/2 HI - 1/3 HI = 1/6 HI
  • Xét tam giác vuông HKE:
    • N là trung điểm của KE nên HN là đường trung tuyến của tam giác vuông HKE.
  • Theo tính chất đường trung tuyến của tam giác vuông:
    • Đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
    • Do đó: HN = 1/2 KE
  • Suy ra:
    • IN = 1/6 HI = 1/2 HN
    • Do đó: HN = 3IN
  • Xét tam giác HIN:
    • HN = 3IN nên tam giác HIN vuông tại I (định lý đảo của định lý Pytago).
  • Kết luận:
    • AI vuông góc KE tại N.

Lưu ý:

  • Trong bài toán này, không thể tính KE bằng cách sử dụng định lý Pitago trong tam giác vuông HKE vì HK.HE là một số âm.
  • Việc chứng minh AB.AK = AE.AC và AKE ~ ACB là cần thiết để chứng minh AI vuông góc KE tại N.
  • Việc chứng minh AI vuông góc KE tại N là một ứng dụng của tính chất trọng tâm của tam giác và tính chất đường trung tuyến của tam giác vuông.
  •  
AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$

Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$

$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$

$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$

$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$

$\Leftrightarrow 9=\frac{225}{a^2+9}$

$\Leftrightarrow 9(a^2+9)=225$

$\Rightarrow a=4$ (cm)

$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

b.

Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật

$\Rightarrow EF=AH$

Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Hình vẽ:

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0

1: Xet ΔACB và ΔHCA có

góc C chung

góc CAB=góc CHA

=>ΔACB đồng dạng vói ΔHCA

2: \(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)

AH=9*12/15=108/15=7,2cm

HB=12^2/15=144/15=9,6cm

=>HC=15-9,6=5,4cm

3: \(\dfrac{S_{ACB}}{S_{HCA}}=\left(\dfrac{CB}{CA}\right)^2=\dfrac{25}{9}\)

4: Xét ΔHAB có HE/HA=HD/HB

nên ED//AB

=>DE vuông góc AC

Xét ΔCAD có

DE,AH là đường cao

DE cắt AH tại E

=>Elà trực tâm

=>CE vuông góc AD

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB,...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE