K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

22 tháng 5 2021

A B C E H K 1 2 1 1 2 2 1 2

a) Xét \(\Delta ABE\) và \(\Delta BEH\) có:

\(\widehat{A_1}=\widehat{H_1}=90^o\)

BE cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) (vì BE là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)

\(\Rightarrow AE=EH\) (2 cạnh tương ứng)   (đpcm)

b) Xét \(\Delta CEH\) và \(\Delta AEK\) có:

\(\widehat{A_2}=\widehat{H_2}\left(=90^o\right)\)

AE = EH (cmt)

\(\widehat{E_1}=\widehat{E_2}\) (2 góc đối đỉnh)

\(\Rightarrow\Delta AEK=\Delta HEC\left(g.c.g\right)\)

\(\Rightarrow EK=CE\) (2 cạnh tương ứng)   (đpcm)

c) Ta có: CH = AK (vì \(\Delta AEK=\Delta HEC\))

              AB = BH (vì \(\Delta ABE=\Delta HBE\))

\(\Rightarrow AB+AK=BH+CH\)

\(\Rightarrow BK=BC\)

\(\Rightarrow\Delta BCK\) cân tại B

Lại có: BE là tia phân giác của \(\widehat{B}\)

\(\Rightarrow\)BE là đường phân giác đồng thời là đường cao của \(\Delta BCK\)

\(\Rightarrow BE\perp CK\)   (đpcm)

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó: ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

13 tháng 3 2022

Bạn có thể vẽ hình giúp mình dc ko

 

a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔABE=ΔKBE

b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)

Do đó:ΔAEM=ΔKEC

Suy ra: EM=EC

c: Xét ΔBMC có BA/AM=BK/KC

nên AK//MC

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

\(\widehat{ABE}=\widehat{KBE}\)

Do đó: ΔBAE=ΔBKE

b: ta có: ΔBAE=ΔBKE

=>EA=EK

Xét ΔEAM vuông tại A và ΔEKC vuông tại K có

EA=EK

\(\widehat{AEM}=\widehat{KEC}\)(hai góc đối đỉnh)

Do đó: ΔEAM=ΔEKC

=>EM=EC

c: Ta có: ΔEAM=ΔEKC

=>AM=KC

Ta có: ΔBAE=ΔBKE

=>BA=BK

Xét ΔBMC có \(\dfrac{BA}{AM}=\dfrac{BK}{KC}\)

nên AK//MC

d: Ta có: NM=NC

=>N nằm trên đường trung trực của MC(1)

Ta có: EM=EC

=>E nằm trên đường trung trực của CM(2)

Ta có: BA+AM=BM

BK+KC=BC

mà BA=BK và AM=KC

nên BM=BC

=>B nằm trên đường trung trực của MC(3)

Từ (1),(2),(3) suy ra B,E,N thẳng hàng

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)