Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1)
a) Xét ∆ vuông ABK và ∆ vuông EBK ta có :
AK = KC
BK chung
=> ∆ABK = ∆EBK ( ch-cgv)
=> AB = BE
=> ∆ABE cân tại B
Mà ABK = EBK
Hay BK là phân giác ABE
=> ∆ABE cân có BK là phân giác
=> BK là trung tuyến đồng thời là đường cao
=> BK\(\perp\)AE
b) Gọi H là giao điểm BK và DC
Xét ∆ vuông AKD và ∆ vuông EKC ta có
AK = KE
AKD = EKC ( đối đỉnh)
=> ∆AKD = ∆EKC ( cgv-gn)
=> AD = EC ( tương ứng)
Mà ∆ABE cân tại B (cmt)
=> AB = AE
Mà AB + AD = BD
BE + EC = BC
=> BD = BC
=> ∆BDC cân tại B
=> BDC = \(\frac{180°-B}{2}\)
Vì ∆ABE cân tại B
=> BAE = \(\frac{180°-B}{2}\)
=> BAE = BDC
Mà 2 góc này ở vị trí đồng vị
=> AE//DC
Vì H là giao điểm DC và BK
=> BH là phân giác DBC
Mà ∆BDC cân tại B (cmt)
=> BK đồng thời là trung tuyến và đường cao
=> BH \(\perp\)DC
Hay BK \(\perp\)DC
Bài 2)
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Xét ∆ vuông ABK và ∆ vuông ACE ta có :
AB = AC
A chung
=> ∆ABK = ∆ACE ( ch-gn)
=> ABK = ACE ( tương ứng)
Xét ∆AOB và ∆AOC ta có :
AB = AC
ABK = ACE
AO chung
=> ∆AOB = ∆AOC (c.g.c)
=> BAO = CAO
Hay AO là phân giác BAC
b) Vì ∆AKB = ∆AEC (cmt)
=> AE = AK
Mà AB = AC
=>EB = KC
Xét ∆ vuông KOC và ∆ vuông EOB ta có
EB = KC
EOB = KOC ( đối đỉnh)
=> ∆KOC = ∆EOB ( cgv-gn)
=> OB = OC
=> ∆OBC cân tại O
c) Xét ∆ cân ABC ta có :
AO là phân giác BAC
AI là trung tuyến BC
=> AI đồng thời là phân giác và là đường cao
=> A , O , I thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E H K 1 2 1 1 2 2 1 2
a) Xét \(\Delta ABE\) và \(\Delta BEH\) có:
\(\widehat{A_1}=\widehat{H_1}=90^o\)
BE cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) (vì BE là tia phân giác của \(\widehat{B}\))
\(\Rightarrow\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)
\(\Rightarrow AE=EH\) (2 cạnh tương ứng) (đpcm)
b) Xét \(\Delta CEH\) và \(\Delta AEK\) có:
\(\widehat{A_2}=\widehat{H_2}\left(=90^o\right)\)
AE = EH (cmt)
\(\widehat{E_1}=\widehat{E_2}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta AEK=\Delta HEC\left(g.c.g\right)\)
\(\Rightarrow EK=CE\) (2 cạnh tương ứng) (đpcm)
c) Ta có: CH = AK (vì \(\Delta AEK=\Delta HEC\))
AB = BH (vì \(\Delta ABE=\Delta HBE\))
\(\Rightarrow AB+AK=BH+CH\)
\(\Rightarrow BK=BC\)
\(\Rightarrow\Delta BCK\) cân tại B
Lại có: BE là tia phân giác của \(\widehat{B}\)
\(\Rightarrow\)BE là đường phân giác đồng thời là đường cao của \(\Delta BCK\)
\(\Rightarrow BE\perp CK\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)
Do đó: ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)
Do đó:ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
![](https://rs.olm.vn/images/avt/0.png?1311)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔBAE=ΔBKE
b: ta có: ΔBAE=ΔBKE
=>EA=EK
Xét ΔEAM vuông tại A và ΔEKC vuông tại K có
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)(hai góc đối đỉnh)
Do đó: ΔEAM=ΔEKC
=>EM=EC
c: Ta có: ΔEAM=ΔEKC
=>AM=KC
Ta có: ΔBAE=ΔBKE
=>BA=BK
Xét ΔBMC có \(\dfrac{BA}{AM}=\dfrac{BK}{KC}\)
nên AK//MC
d: Ta có: NM=NC
=>N nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của CM(2)
Ta có: BA+AM=BM
BK+KC=BC
mà BA=BK và AM=KC
nên BM=BC
=>B nằm trên đường trung trực của MC(3)
Từ (1),(2),(3) suy ra B,E,N thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)