![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
![](https://rs.olm.vn/images/avt/0.png?1311)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
![](https://rs.olm.vn/images/avt/0.png?1311)
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a) 2x2(3x2 - xy - \(\frac{3}{2}\)y2)
= 6x4 - 2x3y - 3x2y2
b) (16x4y3 - 20x2y3 - 4x4y4) : (4x2y2)
= 4x2y - 5y - x2y2 = - x2y2 + 4x2y - 5y
Câu 2:
a) 5x(3 - 2x) - 7(2x - 3)
= 5x(3 - 2x) + 7(3 - 2x)
= (3 - 2x)(5x + 7)
b) x3 - 4x2 + 4x
= x(x2 - 4x + 4)
= x(x - 2)2
c) x2 + 5x + 6
= x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 2)(x + 3)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)(5x-3y+4z)(5x-3y-4z)=(5x-3y)2-(4z)2
=25x2-30xy+9y2-16z2
Do x2=y2+z2
=>z2=x2-y2
=>(5x-3y+4z)(5x-3y-4z)=25x2-30xy+9y2-16x2+16y2=9x2-30xy+25y2=(3x+5y)2(đpcm)
2)(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
<=>(a+d)2-(b+c)2=(a-d)2-(b-c)2
<=>(a+d)2-(a-d)2=(b+c)2-(b-c)2
<=>(a+d-a+d)(a+d+a-d)=(b+c-b+c)(b+c+b-c)
<=>4ab=4bc
<=>ad=bc(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a^2 + 4b^2 - 16 + 4ab
= (a^2 +4ab +4b^2)-16
= (a+2b)^2 -4^2
=(a+2b-4)(a+2b+4)
:v, nhìn đề muốn mỏi mắt, bắt đầu từ câu 1 tự luận hả bạn
hình tự vẽ
a.c/m MNCB là hình thang cân
Ta có MA//BC(gt)=> <MAB = < ABC
NA//BC (gt)=> <NAC = <ACB
Mà \(\Delta ABC\) cân tại A (gt) => <MAB = <NAC
Xét \(\Delta MAB\) và \(\Delta NAC\)
MA =NA (gt)
<MAB = <NAC (cmt)\(\)
AB =AC (gt)
=> \(\Delta MAB\)=\(\Delta NAC\)(c.g.c)
=> <MBA = <NCA (góc tương ứng)
Ta lại có < MBC = <MBA +<ABC
< NCB =<NCA +<ACB
Mặt khác : <MBA = <NCA (cmt); <ABC=<ACB (\(\Delta ABC\)cân tại A)
=> < MBC =< NCB
Xét tứ giác MNCB: MN//BC (gt)
< MBC =< NCB (cmt)
=> tứ giác MNCB là hình thang cân (đpcm)
b.Định tính tứ giác AHIK:
Nối NB:
Xét \(\Delta MNB\): AM =AN =\(\dfrac{MN}{2}\)
HM =HB =\(\dfrac{MB}{2}\)
=> AH là đtrung bình \(\Delta MNB\)
=> AH // NB và AH =\(\dfrac{NB}{2}\)(1)
Tương tự: Xét \(\Delta BCN\): IK là đtrung bình \(\Delta BCN\)
=> IK//NB và IK =\(\dfrac{NB}{2}\)(2)
Từ (1) và (2): => AHIK là hình bình hành
Cảm ơn bạn