K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHCD vuông tại H và ΔDEB vuông tại D có

góc HCD=góc DEB

=>ΔHCD đồng dạng với ΔDEB

=>DH/DB=CH/DE

=>DH*DE=DB*CH

=>DB*CH=DC^2

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

5 tháng 5 2018

please , giúp mình vs ạ

5 tháng 5 2018

( tự vẽ hình nha )

a) Xét tam giác ABC và tam giác BHC có :

\(\widehat{ABC}=\widehat{BHC}\left(=90^o\right)\)

Chung  \(\widehat{ACB}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác BHC ( g-g )

b) Áp dụng định lí Py-ta-go cho tam giác ABC vuông tại B ta có :

\(AC^2=AB^2+BC^2\)

\(\Leftrightarrow AC^2=100\)

\(\Leftrightarrow AC=10\left(cm\right)\)

Do tam giác ABC đồng dạng với tam giác BHC ta có :

\(\frac{AB}{BH}=\frac{AC}{BC}\Leftrightarrow\frac{6}{BH}=\frac{10}{8}\)

\(\Leftrightarrow BH=4,8\left(cm\right)\)

Do AD là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{8}{16}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}BD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)

c)  ( đề sai oy )

10 tháng 2 2018

kho ua

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

a: Xét ΔBAC vuông tại A có AH là đường cao

nên BA^2=BH*BC

b: BC=căn 18^2+24^2=30cm

CD là phân giác

=>DA/AC=DB/BC

=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2

=>DA=8cm

 

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có

góc ABE=góc HBI

=>ΔBAE đồng dạng với ΔBHI

3: góc AEI=góc BEA=góc BIH

góc BIH=góc AIE

=>góc AEI=góc AIE

=>AE=AI

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:

a. Xét tam giác $DEC$ và $ABC$ có:
$\widehat{C}$ chung

$\widehat{EDC}=\widehat{BAC}=90^0$ 

$\Rightarrow \triangle DEC\sim \triangle ABC$ (g.g)

b. 

Từ tam giác đồng dạng phần a suy ra $\frac{DE}{DC}=\frac{AB}{AC}(1)$

Vì $AD$ là phân giác của góc $\widehat{A}$ nên:

$\frac{BD}{DC}=\frac{AB}{AC}(2)$

Từ $(1); (2)\Rightarrow \frac{DE}{DC}=\frac{BD}{DC}$

$\Rightarrow DE=BD$ (đpcm)

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Hình vẽ: