Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b:Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔBAC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )
\(\Rightarrow\Delta ABC\) vuông tại A
b) Xét 2 tam giác vuông BDA và BDE, có:
Góc ABD = góc EBD (phân giác BD của góc B)
BD là cạnh chung
\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)
\(\Rightarrow\) DA = DE(2 cạnh tương ứng)
c) Xét 2 tam giác vuông ADF và EDC, ta có:
DA = DE (chứng minh a)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)
Ta có: \(\Delta\)ADF là tam giác vuông tại A
\(\Rightarrow\) DF là cạnh huyền của tam giác ADF
\(\Rightarrow\) DF > DA
Mà DE = DA (\(\Delta ADF=\Delta EDC\) )
nên DF > DE
a)
Ta có:
\(AB^2+AC^2=BC^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)\(\Rightarrow\Delta ABC⊥A\)
b)
Xét \(\Delta ABD\) và \(\Delta EDB\) có:
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(BD\)là cạnh chung
\(\widehat{A}=\widehat{E}=90^o\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(g.c.g\right)\)
\(\Rightarrow DA=DE\)( hai cạnh tương ứng )
\(\RightarrowĐpcm\)
c) Đề sai thì phải!
a, co: ab2+ac2=32+42=9+16=25
bc2=52=25
suy ra :ab2+ac2=bc2
suy ra: tamgiac abc vuong tai a (dinh ly pytago dao )
b, ......
c, ......
a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
Ta có :
\(BC^2=4^2=16\)(1)
\(AC^2-AC^2=5^2-3^2=25-9=16\)(2)
Áp dụng định lý Pytago đảo vào (1) và (2)
=> Tam giác ABC vuông tại B (đpcm)
Ta có :
\(BC^2=4^2=16\left(1\right)\)
\(AC^2-AC^2=5^2-3^2=25-9=16\left(2\right)\)
Áp dụng định lý Pitago đảo vào ( 1 ) và ( 2 )
=> Tam giác ABC vuông tại B ( đpcm )
a: Xét ΔABC có AB<AC<BC
mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC
nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>DF=DC
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE