K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

B A C 1 2 1 2 I D M N

a) Xét \(\Delta\)ABC có: \(\widehat{BAC}+\widehat{BCA}+\widehat{CBA}=180^o\)

Có \(\widehat{BAC}=60^o\Rightarrow\widehat{BCA}+\widehat{CBA}=120^o\)

\(\Rightarrow\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABC}}{2}\\\widehat{C_1}=\widehat{C_2}=\frac{\widehat{ACB}}{2}\end{cases}}\)\(\Rightarrow\widehat{B_2}+\widehat{C_2}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)

Xét tam giác BIC có:

\(\widehat{BIC}+\widehat{B_2}+\widehat{C_2}=180^o\)

\(\Rightarrow\widehat{BIC}=120^o\)

b) \(\widehat{DIB}=180^o-\widehat{BIC}=60^o\)

\(\Rightarrow\widehat{BIN}=\widehat{CIN}=\frac{1}{2}\widehat{BIC}=60^o\)

Xét \(\Delta\)BDI và \(\Delta\)BNI có: 

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BI chung

\(\widehat{DIB}=\widehat{NIB}\left(gt\right)\)

\(\Rightarrow\Delta BDI=\Delta BNI\left(gcg\right)\)

\(\Rightarrow BD=BN\)(2 cạnh tương ứng)

c) \(\Delta\)CIN và \(\Delta\)CIM có:

\(\widehat{MIC}=\widehat{NIC}=60^o\)

IC chung

\(\widehat{C_1}=\widehat{C_2}\left(gt\right)\)

\(\Rightarrow\Delta MIC=\Delta NIC\left(gcg\right)\)

\(\Rightarrow MC=NC\)(2 cạnh tương ứng)

Mà BN+CM=BN+CN=BC

22 tháng 3 2020

ưeauủnvgbhrjekdlxmjckfỉoekskãdjcfủiedskxcjfr

5 tháng 3 2021

a.Ta có:

ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o 

Lại có :

ˆNIB=ˆIBC+ˆICB

=1/2ˆABC+1/2ˆACB

=1/2(ˆABC+ˆACB)

=1/2(180o−ˆBAC)=60o

NIB^=IBC^+ICB^

=1/2ABC^+1/2ACB^

=1/2(ABC^+ACB^

=1/2(180o−BAC^)=60o

=>ˆNIB=ˆBID

=>ΔNIB=ΔDIB(g.c.g)

=>BN=BD(cmt)

b.Chứng minh tương tự câu a

→CD=CM

→BN+CM=BD+CD=BC→đpcm

a: Xét ΔABC có 

\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-60^0=120^0\)

\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=60^0\)

\(\Leftrightarrow\widehat{BIC}=120^0\)

8 tháng 6 2016

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

25 tháng 3 2024

No

10 tháng 1 2018

A B C D E N I

a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)

Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)

b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)

Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)

Tương tự ID = IN nên IE = IN = ID.

22 tháng 2 2020

a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB  =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên 
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ