Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
a: Xét tứ giác OBAC có
\(\widehat{OBA}=\widehat{OCA}=\widehat{BOC}=90^0\)
Do đó: OBAC là hình chữ nhật
a) Tứ giác OBAC là hình bình hành vì có hai cạnh đối nhau song song (AB và OC) và hai cạnh còn lại cắt nhau vuông góc (OB và AC).
b) Gọi D là điểm đối xứng với O qua B, E là điểm đối xứng với O qua A, và F là điểm đối xứng với O qua C. Ta có:
- OD = OB (vì D là điểm đối xứng với O qua B).
- OE = OA (vì E là điểm đối xứng với O qua A).
- OF = OC (vì F là điểm đối xứng với O qua C).
Do đó, tứ giác ODEF là hình bình hành vì có hai cạnh đối nhau bằng nhau (OD = OF và OE = OA) và hai cạnh còn lại cắt nhau vuông góc (OE và DF).
c) Để chứng minh D đối xứng với F qua A, ta cần chứng minh AD = AF và góc DAF = góc FAD.
Vì D là điểm đối xứng của O qua B, nên BD = BO và góc BDO = góc OBD = 90 độ. Tương tự, vì F là điểm đối xứng của O qua C, nên CF = CO và góc CFO = góc OCF = 90 độ.
Do đó, ta có:
- AD = AB + BD = AB + BO = AB + OC = AC + CO = AC + CF = AF
- Góc DAF = góc DAB + góc BAF = góc OBC + góc OCB = 90 độ + 90 độ = 180 độ
Vậy D đối xứng với F qua A.
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath