Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính)
--> tam giác AOC cân tại O có OM là trung tuyến
---> OM vuông góc AC hay góc OMC=90 o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90 o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO
---> CO hay CD là phân giác góc ACB của tam giác cân ABC
---> CD vuông góc AB hay góc ADC=90 o
AD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD:
CD^ 2= AC^ 2 -AD ^2 = 20 ^2 -12^ 2 =256
---> CD=16 cm
Đặt OC=OA=X
--> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD:
AO2= OD^ 2+AD^ 2
<-->X^ 2= (16-X)^ 2 + 12 ^2
<--> 16^ 2 -32X + X^ 2 +12^ 2 - X ^2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm
Dựng các đường kính MH,KN như hình : A B D c O N Q M P K N H
Tứ giác ABNK có 4 góc vuông nên :
\(\Rightarrow\)Tứ giác ABNK là hình chữ nhật
Ta có :
\(\hept{\begin{cases}ON=OK\\AM=MB\end{cases}}\)
\(\Rightarrow\)MO là đường trung bình
\(\Rightarrow MO=\frac{BN+AK}{2}=\frac{\frac{1}{2}AB+\frac{1}{2}AD}{2}=\frac{\frac{1}{2}BC}{2}\)
\(=\frac{BC}{2}=\frac{\sqrt{2}}{2}\)
Ta có :
\(OM\perp AB,OH\perp CD,OK\perp AD,ON\perp BC\)
\(\Rightarrow\)MNHK \(\in\left(O\right)\)nội tiếp hình vuông
\(\Rightarrow OM=OH=OK=ON=\frac{\sqrt{2}}{2}\)
Trên BC lấy I sao cho IC=IB
Ta có AM=MC=AC/2=20/2= 10 cm
Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm
Áp dụng Pytago trong tam giác vuông AMH: AH2= AM2 - MH2 = 102 - 82= 36 ----> AH=6 cm
có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)
Từ I kẻ IK vuông góc AB
có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB)
---> MIKH là hình bình hành
---> MI=HK=12 cm; MH=IK=8 cm
BK= AB-AH-HK = 24-6-12=6 cm
Xét tam giác AMH và tam giác BIK:
AH=BK=6
góc AHM= góc BKI= 90O
MH=IK=8
----> tam giác AMH=tam giác BIK(c.g.c)
----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA
----> tam giác ABC cân tại C
b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)
----> AM=MC=IB=IC=10 cm
Kéo dài CO cắt AB tại D
tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O
có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o
Tương tự với tam giác OCB được OI vuông góc BC hay góc OIC=90o
Xét tam giác vuông OMC và tam giác vuông OIC:
MC=IC=10cm
OC cạnh chung
--->tam giác OMC = tam giác OIC (ch.cgv)
--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->
- CD vuông góc AB hay góc ADC=90o
- AD=BD=AB/2 = 12 cm
Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256 ---> CD=16 cm
Đặt OC=OA=X --> OD= CD-OC = 16 - X
Theo Pytago tam giác AOD: AO2= OD2+AD2
<-->X2= (16-X)2 + 122
<--> 162 -32X + X2 +122 - X2=0
<--> 400 - 32X=0
<--> X= -400/-32= 12,5 cm
Vậy bán kính đường tròn bằng 12,5 cm
tại sao bạn không kẻ đường cao CD. Như thế sẽ đỡ mất thời gian chứng minh
a. Ta có :\(AB^2+AC^2=BC^2\) nên ABC vuông tại A
nên tâm đường tròn ngoại tiếp ABC là trung điểm BC
b. khi đó R = BC/2 =13/2 cm
khoảng cách từ tâm đến AC là :
\(d=\sqrt{R^2-\frac{AC^2}{4}}=\frac{5}{2}cm\)
ta có :