Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng định lý Py-ta-go tính:
Tam giác OAB vuông tại B nên:
AB2 = OA2 – OB2 = 102 -62 =64
⇒ AB = 8
được AB=8cm.
Bài 2:
Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
a: Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
a: ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của \(\widehat{AOB}\)
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
b: Gọi giao điểm của AB với OC là H
ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=12(cm)
ΔAHO vuông tại H
=>\(HA^2+HO^2=AO^2\)
=>\(HO^2=15^2-12^2=81\)
=>HO=9(cm)
Xét ΔOAC vuông tại A có AH là đường cao
nên OH*OC=OA^2
=>OC=15^2/9=25(cm)
Lời giải:
a) Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:
Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)
⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)
b) Ta có: OH vuông góc AB nên H là trung điểm của AB (quan hệ vuông góc giữa đường kính và dây)
Vậy OC = 25 cm
\(=\sqrt{64}=8\left(cm\right)\)
Áp dụng định lý Pytago vào tam giác AOB vuông tại B, ta có:
AB=\(\sqrt{AO^2-OB^2}=\sqrt{10^2-6^2}\)\(=\sqrt{64}=8\left(cm\right)\)
AB=8