Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) CÓ: A = (1-1/42).(1-1/52).(1-1/62)......(1-1/2002)
=\(\frac{4^2-1^2}{4^2}\). \(\frac{5^2-1^2}{5^2}\). \(\frac{6^2-1^2}{6^2}\)....... \(\frac{200^2-1^2}{200^2}\)
Ta có công thức sau : a2-b2= a2 -ab+ab-b2
= a(a-b) + b(a-b)
= (a+b)(a-b)
ÁP DỤNG CÔNG THỨC TRÊN VÀO BÀI TOÁN TA ĐƯỢC :
A= \(\frac{3.5}{4^2}\). \(\frac{4.6}{5^2}\). \(\frac{5.7}{6^2}\)......\(\frac{199.201}{200^2}\)
= \(\frac{\left(3.4.5.....199\right)\left(5.6.7....201\right)}{\left(4.5.6......200\right)^2}\)
= \(\frac{\left(3.4.5.......199\right)\left(5.6.7.....200.201\right)}{\left(4.5.6.....199.200\right)\left(4.5.6......200\right)}\)
= \(\frac{3.201}{200.4}\)
= \(\frac{603}{800}\)
b)Từ đề bài ta suy ra : B=\(\frac{1.3}{5.7}\).\(\frac{3.5}{7.9}\). \(\frac{5.7}{9.11}\)...... \(\frac{99.101}{103.105}\)
= \(\frac{1.3^2.5^2.7^2......99^2.101}{5.7^2.9^2.11^2....99^2.101^2.103^2.105}\)
=\(\frac{3^2.5}{101.103^2.105}\)
=\(\frac{3}{7500563}\)
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(\Rightarrow3x-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\frac{98}{99}=0\)
\(\Rightarrow3x=0+\frac{98}{99}\)
\(\Rightarrow3x=\frac{98}{99}\)
\(\Rightarrow x=\frac{98}{99}:3\)
\(\Rightarrow x=\frac{98}{297}\)
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(2\left(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}\right)=2.0\)
\(6x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}=0\)
\(6x-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=0\)
\(6x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(6x-\left(1-\frac{1}{11}\right)=0\)
\(6x-\frac{10}{11}=0\)
\(6x=\frac{10}{11}\)
\(x=\frac{5}{33}\)
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
A = ( 4/4 + 2/3 ) - ( 51/3 - 6/5 ) - ( 6 - 7/4 + 3/2 )
Sau đó quy đồng rồi trừ cả là đc
B tương tự
C=13/15
D cx thế . Bạn tự vận dụng đi . Xl vì ko giải đc . Mik đang gấp
\(\text{Bài 4:}\)
\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)
\(b.\left|-5,5\right|=5,5\)
\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
a. 2(x-1) + (x+2) - (x+3) = 15 - (x+1)
=>2x-2+x+2-x-3=15-x-1
=>(2x+x-x)-2+2-3=15-1-x
=>2x-3=14-x
=>3x=17
=>x=17/3
b. x+1/15 + x+2/14 = x+4/12 + x+5/11
\(\Rightarrow\frac{x+1}{15}+1+\frac{x+2}{14}+1=\frac{x+4}{12}+1+\frac{x+5}{11}+1\)
\(\Rightarrow\frac{x+16}{15}+\frac{x+16}{14}=\frac{x+16}{12}+\frac{x+16}{11}\)
\(\Rightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{12}-\frac{x+16}{11}=0\)
\(\Rightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{12}-\frac{1}{11}\right)=0\)
\(\Rightarrow x+16=0\).Do \(\frac{1}{15}+\frac{1}{14}-\frac{1}{12}-\frac{1}{11}\ne0\)
=>x=-16