Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
128 = (122)4 = 1444
812 = (83)4 = 5124
Vì 1444 < 5124
=> 128 < 812
b) (-5)39 = -539 =-(53)13 = -12513
(-2)91 = -291 = -(27)13 = -12813
Vì -12513 > -12813
=> (-5)39 > (-2)91
b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0
x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)
x=-1
a) \(\frac{2}{\left(x+2\right).\left(x+4\right)}+\frac{4}{\left(x+4\right).\left(x+8\right)}+\frac{6}{\left(x+8\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14}{\left(x+2\right).\left(x+14\right)}-\frac{x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{x+14-x+2}{\left(x+2\right).\left(x+14\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow\frac{16}{\left(x+2\right).\left(x+4\right)}=\frac{x}{\left(x+2\right).\left(x+14\right)}\)
\(\Rightarrow x=16\)
Vậy x = 16
\(b,\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(vì\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
\(\text{Vậy }x=-1\)
\(\frac{1}{9}\). 27n=3n
=> 27n :9 =3n
=> 27n: 3n = 9
(33)n : 3n =9
33n : 3n =9
32n = 9
32n= 32
với 2n = 2
=> n=1
vậy n=1
\(B=\left[\frac{x^2-y^2}{xy}-\frac{1}{x+y}\left(\frac{x^2}{y}-\frac{y^2}{x}\right)\right]:\frac{x-y}{x}\)
=>\(B=\left[\frac{x^2-y^2}{xy}-\frac{1}{x+y}\left(\frac{x^3}{xy}-\frac{y^3}{xy}\right)\right].\frac{x}{x-y}\)
=>\(B=\left(\frac{x^2-y^2}{xy}-\frac{1}{x+y}.\frac{x^3-y^3}{xy}\right).\frac{x}{x-y}\)
=>\(B=\left(\frac{x^2-y^2}{xy}-\frac{1}{x+y}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy}\right).\frac{x}{x-y}\)
=>\(B=\left(\frac{x^2-y^2}{xy}-\frac{x^2-xy+y^2}{xy}\right).\frac{x}{x-y}\)
=>\(B=\frac{x^2-y^2-x^2+xy-y^2}{xy}.\frac{x}{x-y}\)
=>\(B=\frac{xy}{xy}.\frac{x}{x-y}\)
=>\(B=1.\frac{x}{x-y}\)
=>\(B=\frac{x}{x-y}\)
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
a) 2,04: (-3,12) = \(\frac{2,04}{-3,12}=\frac{-204}{312}\)
b)
c)
d)
Ta có
\(\left(\frac{1}{2}\right)^{225}\)=\(\left(\frac{1}{2}\right)^{9.25}\)=\(\left(\frac{1}{512}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}\)=\(\left(\frac{1}{3}\right)^{4.25}\)=\(\left(\frac{1}{81}\right)^{25}\)
Vì \(\frac{1}{512}\)<\(\frac{1}{81}\) => \(\left(\frac{1}{512}\right)^{25}\)<\(\left(\frac{1}{81}\right)^{25}\)
Hay \(\left(\frac{1}{2}\right)^{225}\)<\(\left(\frac{1}{3}\right)^{100}\)
Mong bạn tích cho mình nhé
\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{81}\right)^{25}\)\(\left(\frac{1}{2}\right)^{225}=\left[\left(\frac{1}{2}\right)^9\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
\(\left(\frac{1}{3}\right)^{100}=\left[\left(\frac{1}{3}\right)^4\right]^{25}=\left(\frac{1}{81}\right)^{25}\)
vì \(\left(\frac{1}{81}\right)^{25}=\left(\frac{1}{81}\right)^{25}\Rightarrow\left(\frac{1}{2}\right)^{225}=\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrowđpcm\)