Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm:
\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)
Pt đã cho luôn có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\)
Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)
Mà I thuộc d'
\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)
\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
\(\Rightarrow\sum m^2=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Giao điểm với trục tung: thay \(x=0\)
\(\Rightarrow y=\frac{m}{-m}\)
Để đồ thị ko cắt Oy \(\Rightarrow\)y ko tồn tại \(\Leftrightarrow m=0\)
b/ Giao điểm với trục hoành: \(y=0\)
\(\Rightarrow\frac{x^2-mx+m}{x-m}=0\) vô nghiệm
- TH1: \(x^2-mx+m=0\) vô nghiệm
\(\Leftrightarrow\Delta=m^2-4m< 0\Rightarrow0< m< 4\)
TH2: \(x^2-mx+m=0\) có nghiệm \(x=m\)
\(\Leftrightarrow m^2-m^2+m=0\Rightarrow m=0\)
Vậy \(0\le m< 4\)
c/ Từ câu trên ta có \(m^2-4m>0\Rightarrow\left[{}\begin{matrix}m>4\\m< 0\end{matrix}\right.\)