Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có
N là trung điểm của EF
P là trung điểm của DF
Do đó: NP là đường trung bình
=>NP//DE
DN=EF/2=10(cm)
a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng
a: EF=5cm
b: DH=2,4cm
c: Xét tứ giác DMHN có
\(\widehat{DMH}=\widehat{DNH}=\widehat{MDN}=90^0\)
Do đó: DMHN là hình chữ nhật
Suy ra: DH=MN=2,4(cm)
\(a,\) Áp dụng Pytago, ta có \(EF=\sqrt{DE^2+DF^2}=20\left(cm\right)\)
Vì DN là trung tuyến ứng với cạnh huyền EF nên \(DN=\dfrac{1}{2}EF=10\left(cm\right)\)
a: Xét ΔDEF có
M là trung điểm của DE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔDEF
Suy ra: MN//EF
hay EMNF là hình thang
Sao mình không thấy gì hết vậy ạ ??