\(tìmX\in Z\).sao cho tích của 2 p/s 

\(\frac{-3}{x+1}va...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2024

  Bài 1:  \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)

    \(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))

     (\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)

        (\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)

        (\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2

        \(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\) 

TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\) 

TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)  

    Vậy (\(x;y\)  ) = (- \(\dfrac{1}{2}\)\(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))

       

                   

         

 

       

        

 

           

 

30 tháng 1 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : a-b/x = b-c/y = a-c/z = a-b+b-c+c-a/x+y+z = 0

=> a-b=0 ; b-c=0 ; c-a=0

=> a=b=c

Tk mk nha

30 tháng 1 2018

hình như bn áp dụng sai r

19 tháng 7 2018

Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)

Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)

Thế (1) vào A

\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)

\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)

\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)

19 tháng 9 2016

\(\text{Ta có: }\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{x.\left(x+1\right)}=\frac{13}{90}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{13}{90}\)

\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)

=> x + 1 = 18

=> x = 17

22 tháng 9 2018

a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)

\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)

\(\Rightarrow x\left(1+2y\right)=6\)

\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

ta có bảng :

x-11-22-33-66
1+2y-66-33-22-11
yloạiloại2-1loạiloại10

vậy_

phần b tương tự

8 tháng 7 2018

\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{11}{7}+\frac{11}{13}}\)

\(\Rightarrow P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)

\(\Rightarrow P=\frac{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)

\(\Rightarrow P=\frac{3}{11}\)

Vậy \(P=\frac{3}{11}\)

8 tháng 7 2018

Bài 1:

\(P=\frac{0,75-0,6+\frac{3}{7}+\frac{3}{13}}{2,75-2,2+\frac{1}{7}+\frac{11}{13}}\)

\(=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}-\frac{11}{3}}\)

\(=\frac{3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}{11.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)

Bài 2:

a) \(\left(x+1\right)\left(x-2\right)< 0\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)=0\left(\text{loại}\right)\\\left(x-2\right)=0\end{cases}}\Rightarrow x=2\)