K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2015

2.               TA CÓ:    D=\(\frac{2011+2012}{2012+2013}\)

                                   =\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

                  VÌ  2012+2013>2012 

                  MÀ \(\frac{2011}{2012+2013}<\frac{2011}{2012}\)(1)

                 VÌ  2012+2013>2013

                 MÀ \(\frac{2012}{2012+2013}<\frac{2012}{2013}\)(2)

                 TỪ (1) VÀ (2)     \(\Rightarrow\frac{2011+2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)

                VẬY C > D

1 tháng 4 2019

B>A

Khôn chắc

1 tháng 4 2019

Giải cụ thể ra đi bạn 

23 tháng 2 2018

Ta có : 

\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)

Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)

11 tháng 2 2018

ta có :

\(10A=\frac{10^{2014}+10}{10^{2014}+1}=\frac{\left(10^{2014}+1\right)+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

\(10B=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)

ta thấy \(10^{2014}+1< 10^{2015}+1\Rightarrow\frac{9}{10^{2014}+1}>\frac{9}{10^{2015}+1}\Rightarrow10A>10B\Rightarrow A>B\)

25 tháng 10 2017

a/ta gọi biểu thức trên là A.

ta có: A=1+2+22+...+2100

     2A= 2x(1+2+22+...+2100)

     2A= 2x1+2x2+22x2+...+2100x2

     2A= 2+22+23+....+2101

     2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)

     A= 2101-1

b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)