K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x}-2=\sqrt{y-1}-3=0$

$\Leftrightarrow x=4; y=10$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

b.

ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$

$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$

$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$

Bài 1: 

a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)

\(\Leftrightarrow3x^2=12\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

7 tháng 6 2015

sao câu 2+2:2 không có dấu = vậy

có vài câu không phải toán lớp 9 đâu

b: \(5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)

c: \(13+\sqrt{48}=13+4\sqrt{3}=\left(2\sqrt{3}+1\right)^2\)

d: \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)

12 tháng 7 2018

Bài 1:

a)  \(B=\sqrt{1-4x+4x^2}\)

         \(=\sqrt{\left(1-2x\right)^2}\)

         \(=\left|1-2x\right|\)

Nếu  \(x\le\frac{1}{2}\)thì:  \(B=1-2x\)

Nếu  \(x>\frac{1}{2}\)thì:  \(B=2x-1\)

b)  Tại \(x=-7\)thì:  \(B=1-2.\left(-7\right)=15\)

12 tháng 7 2018

Bài 2:

\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2}+\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+2+2-\sqrt{3}=4\) (đpcm)

a) ĐKXĐ : \(x\ge-3\)\(pt\Leftrightarrow x^2-2x+1=x+3-4\sqrt{x+3}+4\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{x+3}-2\right)^2\Leftrightarrow x-1=\sqrt{x+3}-2\Leftrightarrow x+1=\sqrt{x+3}\Leftrightarrow\left(x+1\right)^2=x+3\left(x\ge-1\right)\Leftrightarrow x^2+2x+1=x+3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=-2\left(kotm\right)\end{matrix}\right.\)

19 tháng 6 2021

cảm ơn bạn