Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy : A + B + C + D = 360°
Tự áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = 144°
B = 108°
C = 72°
D = 36°
b) Vì DE , CE là phân giác ADC và ACD
=> EDC = ADE = 18°
=> BCE = ECD = 36°
Xét ∆DEC ta có :
EDC + DEC + ECD = 180°
=> DEC = 126°
Ta có : góc ngoài tại đỉnh C
=> 180° - BCD = 108°
Góc ngoài tại đỉnh D
=> 180° - ADC = 144°
Mà DF , CF là phân giác ngoài góc C , D
=> CDF = 72°
=> DCF = 54°
Xét ∆CDF ta có :
CDF + DFC + DCF = 180°
=> DFC = 44°
Bạn ơi, bạn xem lại đề xem thử có sai ở đâu không nha! Do nếu F nằm trên AD thì làm sao vẽ được góc BFC=90 độ được nhỉ?
a, Ta có : B+C=200
-
B+D=180
Trừ vế vs vế 2 đẳng thức trên ta được:
C-D=20
mà C+ D=120
Công vế vs vế 2 đẳng thức trên ta được:
2C=140
=> C=70
Vậy từ C ta tính được B=130,D=50 và A=110
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=72^0\\\widehat{C}=108^0\\\widehat{D}=144^0\end{matrix}\right.\)
ta có BC=CD (GT) nên tam giác BCD cân tại C => góc CBD = góc CDB ( hai góc đáy)
mặt khác góc CDB = góc BDA ( vì DB là tia phân giác góc D)
=> góc BDA = góc CBD ( cùng = góc CDB)
mà hai góc này nằm ở vị trí so le trong nên BC // AD => ABCD là hình thang
Cho ai ko đọc đc câu hỏi thì:
a) cmr tam giác ABD = tam giác AEC
B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên
C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b:ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có
DE//BC
góc EBC=góc DCB
=>BEDC là hình thang cân
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
BEDC là hình thang cân
=>EB=DC
=>EB=ED=DC
c: góc EBC=góc DCB=(180-40)/2=70 độ
góc BED=góc EDC=180-70=110 độ
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
Tứ giác BCDE : B + C + D + E = 3600
Thay số đo góc B, C gt cho ta tính được D + E = 1900
D - E = 400
Vậy D = (1900 + 400 ) / 2 = 1150
E = 1900 - 1150 = 750
B^ + C^ + D^ +E^ +360o
D^ + E^ = 360o - B^ - C^
D^ + E^ = 360o - 120o - 50o
D^ + E^ = 190o
Ta có: D^ + E^ = 190o
và D^ - E^ = 40o
=> D^ = (190o + 40o) :2 = 115o
E^ = (190o - 40o) :2= 75o