Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia BA lấy I sao cho BI = DQ
\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)
Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)
Ta có: \(AP+AQ+PQ=2AB\)
\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)
\(\Rightarrow PQ=PB+QD\)
\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)
\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(AD\cdot AC=AB\cdot AE\left(1\right)\)
Xét ΔANB vuông tại N có NE là đường cao ứng với cạnh huyền AB
nên \(AB\cdot AE=AN^2\left(2\right)\)
Xét ΔAMC vuông tại M có MD là đường cao ứng với cạnh huyền AC
nên \(AD\cdot AC=AM^2\left(3\right)\)
Từ (1), (2) và (3) suy ra AM=AN
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD đồng dạng với ΔACE
=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
=>\(AB\cdot AE=AD\cdot AC\)(3)
b: Sửa đề: Gọi P là trung điểm của MN.Chứng minh AP vuông góc MN
Xét ΔAMC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(1\right)\)
Xét ΔANB vuông tại N có NE là đường cao
nên \(AE\cdot AB=AN^2\left(2\right)\)
Từ (1) và (2) và (3) suy ra AM=AN
ΔAMN cân tại A
mà AP là đường trung tuyến
nên AP\(\perp\)MN
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
1.
Tam giác AMC vuông tại M với đường cao MD
Áp dụng hệ thức lượng: \(AM^2=AD.AC\) (1)
Tương tự ta có:
\(AN^2=AE.AB\) (2)
Mặt khác xét hai tam giác vuông ABD và ACE có:
\(\widehat{BAC}\) chung
\(\Rightarrow\Delta_VABD\sim\Delta_VACE\) (g.g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Leftrightarrow AB.AE=AC.AD\) (3)
(1);(2);(3) \(\Rightarrow AM^2=AN^2\) \(\Rightarrow AM=AN\)
Bài 2 tham khảo tại đây:
Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC - Hoc24
A B C D E H M N
Xét hai tam giác vuông : tam giác DAB và tam giác EAC có :
góc A là góc chung , góc EAC = góc ADB = 90 độ
=> tam giác DAB đồng dạng tam giác EAC
=> \(\frac{AD}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AD.AC\)
Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông ABN có đường cao NE:\(AN^2=AE.AB\)
Áp dụng hệ thức về cạnh trong tam giác vuông AMC có đường cao MD :
\(AM^2=AD.AC\)
Mà AE . AC = AD . AC => \(AM^2=AN^2\Rightarrow AM=AN\) (đpcm)
Hình bạn tự vẽ nha.
a, Ta có: BC là đường trung trực của \(\Delta ABC\)\(\Rightarrow BM=MC,\widehat{DMC}=90^o\)
\(\Delta ABC,\widehat{BAC}=90^o\)có AM là trung tuyến của \(\Delta ABC\)\(\Rightarrow AM=BM=MC=\frac{BC}{2}\)
\(\Delta AMC\)có: \(AM=MC\left(cmt\right)\Rightarrow\Delta AMC\)cân tại M
b, \(\Delta ABC\)và \(\Delta MDC\)có:
\(\widehat{BAC}=\widehat{DMC}=90^o\)
\(\widehat{C}\)chung
\(\Rightarrow \Delta ABC \sim \Delta MDC (g-g)\)
c, \(\Delta BEC\)có: \(EM\perp BC\left(gt\right)\)
\(AC\perp AB\left(gt\right)\)
\(EM \cap AC \) \(=\left\{D\right\}\)
\(\Rightarrow D\)là trực tâm của \(\Delta BEC\)\(\Rightarrow BD\perp CE\)