K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang

18 tháng 11 2016

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

18 tháng 11 2016

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
7 tháng 10 2017

a, Vì  M B C ^ = M D B ^ = 1 2 s đ C B ⏜  nên chứng minh được ∆MBC:∆MDB (g.g)

b, Vì  M B O ^ + M A O ^ = 180 0  nên tứ giác MAOB nội tiếp

c, Đường tròn đường kính OM là đường tròn ngoại tiếp tứ giác MAOB => r =  M O 2

Gọi H là giao điểm của AB với OM

=> OH ⊥ AB; AH = BH =  R 3 2

Giải tam giác vuông OAM, đường cao AH ta được OM = 2R Þ r = R

d,  Ta có  M I B ^ = s đ D E ⏜ + s đ B C ⏜ 2 và  M A B ^ = s đ A C ⏜ + s đ B C ⏜ 2

Vì AE song song CD =>  s đ D E ⏜ = s đ A C ⏜ =>  M I B ^ = M A B ^

Do tứ giác MAIB nội tiếp hay 5 điểm A, B, O, I, M nằm trên cùng 1 đường tròn kính MO

Từ đó ta có được  M I O ^ = 90 0 => OI ⊥ CD hay I là trung điểm của CD

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0