Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(2\left(x^8+y^8\right)\ge\left(x^3+y^3\right)\left(x^5+y^5\right)\)
\(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Ta CM: \(\Leftrightarrow x^8+y^8\ge x^5y^3+x^3y^5\)
Áp dụng bđt Cô si:
\(x^8+x^8+x^8+x^8+x^8+y^8+y^8+y^8\ge8x^5y^3\) (*)
Tương tự, \(5y^3+3x^3\ge8x^3y^5\) (**)
Từ (*), (**) \(\Rightarrowđpcm\)
Áp dụng AM-GM ta có \(\frac{1^2}{x}+\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1+1\right)^2}{2x+y+z}\)
hay \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\)
Tương tự : \(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{2y+x+z}\) ; \(\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\ge\frac{16}{2z+x+y}\)
Cộng theo vế : \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge16\left(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\right)\)
\(\Leftrightarrow\)\(16\left(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\right)\le16\)
\(\Leftrightarrow\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{z^2}+\dfrac{z^3}{x^2}\right)\left(x+y+z\right)\ge\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\right)^2\)
Cần chứng minh \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\)
Dễ thấy;\(VT=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
BĐT được chứng minh
\("="\Leftrightarrow x=y=z\)