Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Côsi cho 2 số dương x và \(\sqrt{1-y^2}\) có:
x\(\sqrt{1-y^2}\) ≤ \(\dfrac{x^2+1-y^2}{2}\)
Tương tự: \(y\sqrt{1-z^2}\le\dfrac{y^2+1-z^2}{2}\); \(z\sqrt{1-x^2}\le\dfrac{z^2+1-x^2}{2}\)
=> \(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\dfrac{x^2+1-y^2+y^2+1-z^2+z^2+1-x^2}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra ⇔ x = y = z = \(\dfrac{\sqrt{2}}{2}\) => x2 = y2 = z2 = \(\dfrac{1}{2}\)
=> x2 + y2 + z2 = 3x2 = 3.\(\dfrac{1}{2}\) = \(\dfrac{3}{2}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)
đẳng thức xảy ra khi x=y=z
Trước hết ta chứng minh bổ đề sau đây: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{9\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\). Đặt P = VT - VP.
(đây là phân tích của một người khác, không phải của em)
Do đó \(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{9\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}=\frac{27}{\sqrt{\left(x+y+z\right)^2.\left(x+y+z\right)^2}}\)
\(\ge\frac{27}{\sqrt{3\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2}}=\frac{9}{x+y+z}\)
Đẳng thức xảy ra khi x = y = z = 1
P/s: Em không chắc lắm!
Theo giả thiết: \(x^2+y^2+z^2=3\Rightarrow2\left(xy+yz+zx\right)=\left(x+y+z\right)^2-3\)
Theo BĐT Bunyakovsky dạng phân thức, ta có:
\(VT=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x^2}{xy}+\frac{y^2}{yz}+\frac{z^2}{zx}\)\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\)
Đến đây, ta cần chỉ ra rằng \(\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3}\ge\frac{9}{x+y+z}\)(*)
Ta có: \(xy+yz+zx>0\Leftrightarrow\left(x+y+z\right)^2\ge x^2+y^2+z^2=3\)
\(\Rightarrow x+y+z>\sqrt{3}\)
Đặt \(x+y+z=t>\sqrt{3}\). Khi đó (*) trở thành \(\frac{2t^2}{t^2-3}\ge\frac{9}{t}\Leftrightarrow\frac{\left(t-3\right)^2\left(2t+3\right)}{t\left(t^2-3\right)}\ge0\)(đúng với mọi \(t>\sqrt{3}\))
Đẳng thức xảy ra khi \(t=3\)hay x = y = z = 1
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{z^2}+\dfrac{z^3}{x^2}\right)\left(x+y+z\right)\ge\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\right)^2\)
Cần chứng minh \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\)
Dễ thấy;\(VT=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
BĐT được chứng minh
\("="\Leftrightarrow x=y=z\)