K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6

a) Vì \(p\) là snt lớn hơn 3 nên \(p⋮̸3\) \(\Rightarrow p^2\equiv1\left[3\right]\) hay \(p^2-1⋮3\)

b) Theo câu a), ta có \(p^2\equiv q^2\equiv1\left[3\right]\) nên \(p^2-q^2⋮3\)

c) Vì \(p,q\) là các snt lớn hơn 3 nên chúng cũng là các snt lẻ \(\Rightarrow p^2\equiv q^2\equiv1\left[8\right]\)

\(\Rightarrow p^2-q^2⋮8\)

3 tháng 9 2017

Chọn A

5 tháng 5 2020

a) Ta có 2n+8=2(n-3)+14

=> 14 chia hết cho n-3

n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}

ta có bảng

n-3-14-7-2-112714 
n-11-412451017 


Vậy n={-11;-4;-1;2;4;5;10;17}

5 tháng 5 2020

b) Ta co 3n+11=3(n-5)-4

=> 4 chia hết chia hết cho n+5 

n nguyên => n+5 nguyên

=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

ta có bảng

n+5-4-2-1124
n-9-7-6-4-3-1

vậy n={-9;-7;-6;-4;-3;-1}

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

\(M=3^0+3^1+3^2+...+3^{2023}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2020}+3^{2021}+3^{2022}+3^{2023}\right)\)

\(=40+3^4\left(1+3+3^2+3^3\right)+...+3^{2020}\left(1+3+3^2+3^3\right)\)

\(=40+3^4\cdot40+...+3^{2020}\cdot40\)

\(=40\left(1+3^4+...+3^{2020}\right)\)

\(=20\cdot2\left(1+3^4+...+3^{2020}\right)⋮20\)

8 tháng 9 2019

Lớp 12 ?!

Ta có:

7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N

8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N

\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)

Ta có số có 2018 chữ số lớn nhất là 999....99 (2018 chữ số 9)

=> A lỡn nhất là 2018 x 9 = 18162

=> B lớn nhất là 1 + 8 + 1 + 6 + 2 = 18

=> C lớn nhất là 1 + 8 = 9

Ta có 3 x 9 + 2 = 29 mà 29 là số nguyên tố nên không tồn tại số như vậy