Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) \(\left(3+4i\right)+\left(-1+5i\right)=\left(3-1\right)+\left(4i+5i\right)=2+9i\)
b) \(\left(3-4i\right)-\left(1-5i\right)=\left(3-1\right)-\left(4i-5i\right)=2+i\)
c)\(\left(-3+4i\right)+\left(1-4i\right)=\left(-3+1\right)+\left(4i-4i\right)=-2\)
d) \(\left(3-5i\right)-\left(4+i\right)=\left(3-4\right)-\left(5i+i\right)=-1-6i\)
Bài 2.
a) \(\left(3+4i\right)\left(-1+5i\right)=3.\left(-1\right)+4i.\left(-1\right)+3.5i+4i.5i\)
\(=-3-4i+15i-20=-23+11i\)
b) \(\left(3-5i\right)-\left(4+i\right)=\left(3-4\right)-\left(5i+i\right)=-1-6i\)
1+1=2 mình biết bài này rất khó nên cố gắng làm nếu sai xin bạn hãy chỉ cho mìn cách làm đúng
nó có thể bằng rất nhiều số
vì tùy theo người làm đúng hay sai
=2 nhé
HT
nếu đề đúng
\(f'\left(x\right)=\frac{3}{2}x^2+m^2-4\)
\(f''\left(x\right)=3x\)
Để f(x) đạt cực đại tại x=1 <=> \(\hept{\begin{cases}f'\left(1\right)=0\\f''\left(1\right)< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{3}{2}+m^2-4=0\\3.1< 0\end{cases}}\)vô lí
Vậy ko tồn tại m
=2 nhé
bằng 2