Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không hiểu rằng bạn muốn tìm thể tích hình lăng trụ nào?có phải là thể tích hình hộp ko?
đầu bài nó chỉ cho như thế thôi, bạn thử tính xem là đáp án nào
Giải
đàu tiên ta tìm bán kính đường tròn ngoại tiếp tam giác cân ABE (EA=EB)
R=\( \frac{AE.EB.AB}{4S}\) =\(\frac{5}{8}\) .Gọi I là tâm đường trong ngoại tiếp→AI=\(\frac{5}{8}\) .Gọi N là trung điểm SA
Trong mp(SAI) từ I kẻ đt d vuông góc vs đáy.Từ N kẻ đt vuông góc SA cắt d tại O
suy ra O là tâm mặt cầu cần tìm
dựa vào tam giác vuông OAI suy ra bán kính mặt cầu =\(\sqrt{OI^2 +AI^2}\)=\(\frac{\sqrt{41}}{8}\)
suy ra diện tích mặt cầu=4π\(R^2\) suy ra C
Lời giải:
Giả sử \(A=(a,0,0); B=(0,b,0); C=(0,0,c)\)
Phương trình mặt phẳng $(P)$ là:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (đây là dạng PTMP theo đoạn chắn rất quen thuộc)
Vì \(M\in (P)\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{1}{c}=1(*)\)
Ta có:
\(A=\frac{1}{OA^2}+\frac{1}{OB^2}+\frac{1}{OC^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Áp dụng BĐT Bunhiacopxky có:
\(\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)(1+2^2+1)\geq \left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow 6A\geq 1\Leftrightarrow A\geq \frac{1}{6}\). Điểm "min" xảy ra khi : \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}\)
Đặt \(\frac{1}{a}=\frac{1}{2b}=\frac{1}{c}=t\Rightarrow \left\{\begin{matrix} a=\frac{1}{t}\\ b=\frac{1}{2t}\\ c=\frac{1}{t}\end{matrix}\right.\). Thay vào \((*)\Rightarrow t=\frac{1}{6}\)
Thay vào ptmp ban đầu suy ra ptmp (P) là:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow xt+2yt+zt=1\)
\(\Leftrightarrow \frac{x}{6}+\frac{y}{3}+\frac{z}{6}=1\) hay \(x+2y+z-6=0\)
Đáp án A
Do (P) ⊥ AB nên mp(P) có một vectơ pháp tuyến là n P → = AB → = (-2; 1; 3). Mặt khác (P) đi qua điểm A nên phương trình của mặt phẳng (P) là:
-2(x - 1) + (y - 0) + 3(z + 2) = 0 ⇔ -2x + y + 3z + 8 = 0 ⇔ 2x - y - 3z - 8 = 0.
Vậy đáp án đúng là A.
Lưu ý. Khi ta viết phương trình mặt phẳng (P) bị nhầm ở cột z:
-2(x - 1) + (y - 0) + 3(z + 2) = 0 <> 2x - y - 3z - 4 = 0
thì ta được đáp án B.
Khi ta viết phương trình mặt phẳng bị nhầm giữa tọa độ của điểm A với tọa độ của vectơ pháp tuyến 1(x - (-2)) + 0(y - 1) -2(z - 3) = 0 <=> x - 2x + 8 = 0 thì ta được đáp án C.
Khi ta viết phương trình mặt phẳng đi qua B thì ta thu được đáp án D.