K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(1=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\ge\left(a+b\right)\left[\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2\right]=\frac{\left(a+b\right)^3}{4}\)

\(\Rightarrow\left(a+b\right)^3\le4\Rightarrow a+b\le\sqrt[3]{4}\)

\(A=\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\le\sqrt{2\sqrt[3]{4}}\)

\("="\Leftrightarrow a=b=\frac{1}{\sqrt[3]{2}}\)

a: \(=\sqrt{17^2\cdot21}=17\sqrt{21}\)

b: \(=\sqrt{2.5\cdot2.5\cdot5\cdot20}=2.5\cdot10=25\)

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

15 tháng 10 2020

chờ tí nhé

15 tháng 10 2020

Đâu bạn

NV
19 tháng 4 2019

ĐKXĐ: \(x\ge-3\)

\(x^4\sqrt{x+3}-2x^4+2019x-2019=0\)

\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow x^4\left(\frac{x-1}{\sqrt{x+3}+2}\right)+2019\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2019\right)=0\)

\(\Leftrightarrow x-1=0\) (ngoặc phía sau luôn dương)

\(\Rightarrow x=1\)