Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi ngửi giải chi tiết ra giúp mik nha bằng nhiều phương pháp cũng được nha
Bài 1:
a; 3a + 8b ⋮ 19
3.(3a + 8b) ⋮ 19
9a + 24b ⋮ 19
9a + 5b + 19 b ⋮ 19
9a + 5b ⋮ 19 (đpcm)
Bài 1
b; \(\overline{1a2b3}\) ⋮ 3
1 + a + 2 + b + 3 ⋮ 3
(1 + 2 + 3) + (a + b) ⋮ 3
6 + (a + b) ⋮ 3
a + b ⋮ 3
a - b = 3
a = b + 3
Thay a = b + 3 vào biểu thức a + b ⋮ 3 ta có:
b + 3 + b ⋮ 3
2b ⋮ 3
b = 0; 3; 6; 9
Lập bảng ta có:
b | 0 | 3 | 6 | 9 |
a = b + 3 | 3 | 6 | 9 | 12 (loại) |
Theo bảng trên ta có: (a; b) = (3; 0); (6; 3);(9; 6)
a)\(x+12=-23+5\)
\(< =>x+12+23-5=0\)
\(< =>x+30=0\)
\(< =>x=-30\)
ta có : 14 + x chia hết cho x + 3
vì 3 là số lẻ và 4 là số chẵn nên x phải là chẵn vì lẻ ko chia hết cho chẵn (14 + x) là lẻ và (x + 3) là chẵn
ta có : P = {x E N* | x chia hết cho 2} (x khác 0 vì 14 không chia hết cho 3)
nhưng vì 14 - 3 = 11 mà 11 là số lẻ nên phép tính đó là sai
i) \(2345-1000\div\left[19-2\left(21-18\right)^2\right]\)
\(=\)\(2345-1000\div\left[19-2.3^2\right]\)
\(=\)\(2345-1000\div\left[19-2.9\right]\)
\(=\)\(2345-1000\div\left[19-18\right]\)
\(=\)\(2345-1000\div1\)
\(=\)\(2345-1000\)
\(=\)\(1345\)
j) \(128-\left[68+8\left(37-35\right)^2\right]\div4\)
\(=\)\(128-\left[68+8.2^2\right]\div4\)
\(=\)\(128-\left[68+8.4\right]\div4\)
\(=\)\(128-\left[68+32\right]\div4\)
\(=\)\(128-100\div4\)
\(=\)\(128-25\)
\(=\)\(3\)
k) \(568-\left\{5\left[143-\left(4-1\right)^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-3^2\right]+10\right\}\div10\)
\(=\)\(568-\left\{5\left[143-9\right]+10\right\}\div10\)
\(=\)\(568-\left\{5.134+10\right\}\div10\)
\(=\)\(568-\left\{670+10\right\}\div10\)
\(=\)\(568-680\div10\)
\(=\)\(568-68\)
\(=\)\(500\)
a) \(107-\left\{38+\left[7.3^2-24\div6+\left(9-7\right)^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.3^2-24\div6+2^3\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[7.9-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+\left[63-4+8\right]\right\}\div15\)
\(=\)\(107-\left\{38+67\right\}\div15\)
\(=\)\(107-105\div15\)
\(=\)\(107-7\)
\(=\)\(7\)
b) \(307-\left[\left(180-160\right)\div2^2+9\right]\div2\)
\(=\)\(307-\left[20\div4+9\right]\div2\)
\(=\)\(307-\left[5+9\right]\div2\)
\(=\)\(307-14\div2\)
\(=\)\(307-7\)
\(=\)\(300\)
c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]\div40\)
\(=\)\(205-\left[1200-\left(16-6\right)^3\right]\div40\)
\(=\)\(205-\left[1200-10^3\right]\div40\)
\(=\)\(205-\left[1200-1000\right]\div40\)
\(=\)\(205-200\div40\)
\(=\)\(205-5\)
\(=\)\(200\)
Bài 1: Trong các số: 4827; 5670; 6915; 2007. a) Số nào chia hết cho 3 mà không chia hết cho 9? Số: 4827 ; 6915 b) Số nào chia hết cho cả 2; 3; 5 và 9? Số: 5670 | Bài 2: Trong các số: 825; 9180; 21780. a) Số nào chia hết cho 3 mà không chia hết cho 9? Số: 825 b) Số nào chia hết cho cả 2; 3; 5 và 9? Số: 9180 ; 21 780 |