\(\frac{x^6-3x^5+3x^4-x^3+2015}{x^6-x^3+3x^2-3x+2015}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

a.\(\frac{1}{2}-\left(x-\frac{1}{3}\right)=\frac{1}{6}\)

\(x-\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)

\(x-\frac{1}{3}=\frac{1}{3}\)

\(x=\frac{2}{3}\)

11 tháng 3 2019

\(a.\frac{1}{2}-\left(x-\frac{1}{3}\right)=\frac{1}{6}\)

\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\frac{5}{6}-x=\frac{1}{6}\)

\(\Leftrightarrow\frac{5}{6}-\frac{1}{6}=x\)

\(\Leftrightarrow x=\frac{2}{3}\)

\(b.||3x+2|-2x-5|=3x-\left(-1\right)^{2015}\)

\(\Leftrightarrow||3x+2|-2x-5|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}|3x+2|-2x-5=3x+1\\|3x+2|-2x-5=-3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}|3x+2|=5x+6\left(n\right)\\|3x+2|=-\left(x-4\right)\left(l\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x+2=5x+6\\3x+2=-5x-6\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x=4\\8x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)

V...\(x=-1;x=-2\)

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

a: \(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}\)

\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x+7\right)\)

\(\Leftrightarrow15x^2+3x+10x+2=15x^2+21x-5x-7\)

=>16x-7=13x+2

=>3x=9

hay x=3

b: \(\dfrac{x+1}{2016}+\dfrac{x}{2017}=\dfrac{x+2}{2015}+\dfrac{x+3}{2014}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x}{2017}+1\right)=\left(\dfrac{x+2}{2015}+1\right)+\left(\dfrac{x+3}{2014}+1\right)\)

=>x+2017=0

hay x=-2017

e: \(\left(2x-3\right)^2=144\)

=>2x-3=12 hoặc 2x-3=-12

=>2x=15 hoặc 2x=-9

=>x=15/2 hoặc x=-9/2

22 tháng 7 2018

\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)

<=> \(3x^2-3x+10-5x=3x^2-7x+6\)

<=> \(-x=-4\)

<=> \(x=4\)

\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)

<=> \(\left(x+2\right)^2=\frac{1}{6}\)

<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)

5 tháng 10 2019

1) Ta có: \(\frac{3x}{4}=\frac{2y}{3}=\frac{9z}{7}.\)

=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{7}{9}}\)

=> \(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}\)\(x+2y-3z=18.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}=\frac{x+2y-3z}{\frac{4}{3}+3-\frac{7}{3}}=\frac{18}{2}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{\frac{4}{3}}=9\Rightarrow x=9.\frac{4}{3}=12\\\frac{y}{\frac{3}{2}}=9\Rightarrow y=9.\frac{3}{2}=\frac{27}{2}\\\frac{z}{\frac{7}{9}}=9\Rightarrow z=9.\frac{7}{9}=7\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;\frac{27}{2};7\right).\)

Chúc bạn học tốt!

5 tháng 10 2019

Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{2x^3}{16}-\frac{3x^2}{12}+\frac{xyz}{60}=-108\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}=\frac{2x^3-3x^2+xyz}{16-12+60}=-\frac{108}{64}=-\frac{27}{16}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-\frac{27}{16}\Rightarrow x=-\frac{27}{16}.2=-\frac{27}{8}\\\frac{y}{5}=-\frac{27}{16}\Rightarrow y=-\frac{27}{16}.5=-\frac{135}{16}\\\frac{z}{6}=-\frac{27}{16}\Rightarrow z=-\frac{27}{16}.6=-\frac{81}{8}\end{matrix}\right.\)

Vậy...

20 tháng 11 2017

a, Ta có: \(\left(2x+\dfrac{1}{4}\right)^4\ge0\rightarrow\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Dấu ''=" xảy ra khi \(2x+\dfrac{1}{4}=0\rightarrow2x=\dfrac{-1}{4}\rightarrow x=\dfrac{-1}{8}\)

Vậy MinE=6\(\Leftrightarrow x=\dfrac{-1}{8}\)

b, Ta có: \(\left(5-3x\right)^2\ge0\rightarrow\left(5-3x\right)^2-2013\ge-2013\)

Dấu ''='' xảy ra khi \(5-3x=0\rightarrow3x=5\rightarrow x=\dfrac{5}{3}\)

Vậy MinE=-2013\(\Leftrightarrow x=\dfrac{5}{3}\)

20 tháng 11 2017

a) \(E=\left(2x+\dfrac{1}{4}\right)^4+6\)

\(\left(2x+\dfrac{1}{4}\right)^4\ge0\)

Nên \(\left(2x+\dfrac{1}{4}\right)^4+6\ge6\)

Vậy GTNN của \(E=6\) khi \(2x+\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{-1}{8}\)

b) \(E=\left(5-3x\right)^2-2013\)

\(\left(5-3x\right)^2\ge0\)

Nên \(\left(5-3x\right)^2-2013\ge-2013\)

Vậy GTNN của \(E=-2013\) khi \(5-3x=0\Leftrightarrow x=\dfrac{5}{3}\)

c) \(A=2013+\left|2x-3\right|\)

\(\left|2x-3\right|\ge0\)

Nên \(2013+\left|2x-3\right|\ge2013\)

Vậy GTNN của \(A=2013\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

d) \(B=-1+\left|\dfrac{1}{2}x-3\right|\)

\(\left|\dfrac{1}{2}x-3\right|\ge0\)

Nên \(-1+\left|\dfrac{1}{2}x-3\right|\ge-1\)

Vậy GTNN của \(B=-1\) khi \(\dfrac{1}{2}x-3=0\Leftrightarrow x=6\)